
S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 0 | S e i t e

PROJEKTARBEIT

Smarter LSS

Autor:
SCHAUER Philipp - REIGL Julian

 Version:

 -V260125X2150

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 1 | S e i t e

INHALTSVERZEICHNIS
1 Urheberrecht .. 3

2 Projekttagebuch ... 4

2.1 07.Okt 2025 .. 4

2.2 14.Okt 2025 .. 4

2.3 21.Okt 2025 .. 4

2.4 04.Nov 2025 ... 4

2.5 11.Nov 2025 ... 4

2.6 18.Nov 2025 ... 5

2.7 25.Nov 2025 ... 5

2.8 02.Dec 2025 ... 5

2.9 09.Dec 2025 ... 5

2.10 16.Dec 2025 ... 5

2.11 23.Dec 2025 ... 6

2.12 13.Jan 2026 .. 6

2.13 16.Jan 2026 .. 6

2.14 17.Jan 2026 .. 6

2.15 19.Jan 2026 .. 6

3 Projektdefinition .. 7

3.1 Projektbeschreibung ... 7

3.2 Zielsetzung ... 7

3.3 Projektumfang .. 7

3.4 Erwartetes Ergebnis ... 7

3.5 Dokumentation ... 7

4 Dokumentation .. 8

4.1 SENTRON, Messgerät, 7KM PAC2200 (7KM2200-2EA40-1EA1) 8

4.1.1 Produkt Beschreibung [1] .. 8

4.1.2 Modbus Register .. 9

4.1.2.1 Basisgrößen ... 9

4.1.2.2 Energiezähler .. 9

4.1.2.3 Einstellungen und Parameter .. 9

4.1.2.4 Kommandos und Status .. 9

4.2 Powercenter 1100 (7KN1111-0MC00) .. 9

4.2.1 Produkt Beschreibung [2] .. 9

4.2.2 Modbus Register .. 10

4.2.2.1 Messwerte ... 10

4.2.2.2 Parameter ...11

4.2.2.3 Kommunikation .. 12

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 2 | S e i t e

4.3 Brandschutzschalter-LS-Kombi Messfunktion (5SV6016-7MC16) 17

4.3.1 Produkt Beschreibung [3] .. 17

4.3.2 Modbus Register .. 17

4.3.2.1 Messwerte ... 17

4.3.2.2 Parameter .. 18

4.3.2.3 Kommunikation .. 20

5 Visualisierung .. 21

5.1 C# ASP.NET MVC .. 21

5.1.1 Model (Daten- und Geschäftslogik) .. 21

5.1.2 Controller (Steuerlogik und Anwendungsfluss) .. 21

5.1.3 View (Benutzeroberfläche / Darstellung) .. 22

5.2 GreenTecLab Visualisierung (C#) .. 23

5.2.1 Frontend ... 23

5.2.2 Backend ... 27

5.2.2.1 Modbus TCP Auslesen .. 27

5.2.2.2 JSON-File ... 33

6 Modbus .. 36

6.1 Modbus-RTU ... 36

6.1.1 Kommunikation ... 37

6.1.2 Kommunikationsstapels ... 37

6.1.2.1 RS-485 .. 38

6.1.2.2 RS-232 .. 39

6.1.2.3 Zusammenfassung ... 39

6.1.3 Datenübertragung und Telegrammstruktur .. 40

6.1.3.1 Registersystem .. 40

6.1.3.2 Fehlererkennung ... 41

6.1.3.3 Beispiel ... 41

6.2 Modbus-TCP .. 42

6.2.1 Bedeutung TCP .. 42

6.2.2 Kommunikationsstapels ... 42

6.2.3 Datenübertragung und Telegrammstruktur .. 43

6.2.3.1 MBAP-Header .. 43

6.2.3.2 Die PDU .. 43

6.2.3.3 Beispiel ... 44

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 3 | S e i t e

1 URHEBERRECHT
Die Nutzung und Vervielfältigung dieser Projektarbeit unterliegt den Bestimmungen des

österreichischen Urheberrechts, insbesondere § 42 Abs. 4 UrhG:

(4) Jede natürliche Person darf von einem Werk einzelne Vervielfältigungsstücke auf anderen als

den in Abs. 1 genannten Trägern [Papier oder einem ähnlichen Träger, die jedermann zum

eigenen Gebrauch freistehen] zum privaten Gebrauch und weder für unmittelbare noch

mittelbare kommerzielle Zwecke herstellen.

Gemäß § 42 Abs. 5 UrhG dürfen diese Vervielfältigungsstücke nicht dazu verwendet werden, das

Werk der Öffentlichkeit zugänglich zu machen.

Da die Erstellung dieser Projektarbeit mit erheblichem Zeit- und Arbeitsaufwand verbunden war, ist es

nur fair und angemessen, dass Personen, die keinen direkten Zugang zu uns haben, sich mit ihrem

Anliegen direkt an uns wenden. Jegliche unautorisierte Weitergabe oder Veröffentlichung der

Projektarbeit ist untersagt.

Bei Anfragen stehen wir unter julian.reigl@outlook.de oder phili.schauer@gmx.at gerne zur

Verfügung.

mailto:julian.reigl@outlook.de
mailto:phili.schauer@gmx.at

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 4 | S e i t e

2 PROJEKTTAGEBUCH
2.1 07.OKT 2025
REI und SCP haben die benötigten Teile für das Projekt erhalten und gemeinsam die Projektdefinition

ausgearbeitet. Dabei wurden die Ziele, der Aufbau und die geplante Vorgehensweise festgelegt.

2.2 14.OKT 2025
Zu Beginn hat SCP die Beschreibungen und Anleitungen zu den Komponenten vorgelesen. REI hat

anschließend ein kleines Demonetzwerk aufgebaut. Dafür wurde eine Fritz!Box als Router verwendet,

an die ein PAC2200 und ein POC1100 angeschlossen wurden.

Um das Testen und Arbeiten zu erleichtern, haben beide alle Komponenten auf eine Hutschiene

montiert und passend verdrahtet. Danach hat REI das Netzwerk konfiguriert.

Anschließend haben REI und SCP überprüft, ob die Geräte im Netzwerk erreichbar sind –

beispielsweise über die Weboberfläche oder die Powerconfig-App von Siemens.

2.3 21.OKT 2025
Heute war SCP krank, sodass nur allein gearbeitet werden konnte. REI hat sich in den gesamten drei

Stunden intensiv mit dem Modbus-Protokoll beschäftigt. Zunächst wurde die Funktionsweise des

Protokolls analysiert, um ein besseres Verständnis für die Kommunikation zwischen den Geräten zu

bekommen.

Anschließend wurden die ersten Verbindungsversuche mit den einzelnen Geräten durchgeführt, wobei

Daten ausgelesen und die Reaktionsfähigkeit der Geräte überprüft wurden.

2.4 04.NOV 2025
Es wurde festgelegt, dass ein C#-Webserver entwickelt wird, da dieser umfangreiche Möglichkeiten

bietet und viel Freiheit im Design erlaubt. Zudem wurde der Grundstein des Projekts gelegt und die

grundlegende Struktur erstellt.

Im weiteren Verlauf wurde der Dashboard-Controller programmiert und das Routing bzw. Mapping

eingerichtet, um die Verbindungen zwischen den einzelnen Seiten und Funktionen herzustellen.

2.5 11.NOV 2025
Es wurde eine C#-Applikation entwickelt, die über Modbus-TCP die Daten aus unseren Geräten

ausliest. Dafür haben wir zunächst die notwendigen Klassen, Modelle und Properties definiert, um die

ausgelesenen Werte strukturiert verarbeiten zu können.

Die Kommunikation mit den Geräten wurde mithilfe von TcpClient und NetworkStream umgesetzt.

Unsere Anwendung sendet einen eigenen Bitstream an das jeweilige Gerät, empfängt die Antwort über

den Stream und filtert anschließend gezielt die relevanten Daten heraus. Danach wurden die

Ergebnisse passend formatiert, damit sie übersichtlich dargestellt und weiterverarbeitet werden

können.

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 5 | S e i t e

2.6 18.NOV 2025
Heute wurde weiter am Modbus-System gearbeitet. Das gesamte System wurde umfassend

umstrukturiert, um den Server schneller und insgesamt leistungsfähiger zu machen.

Im Zuge der Optimierung wurde die komplette Speicherstruktur überarbeitet. Der Server holt nun

automatisch alle zwei Minuten die aktuellen Daten von den Geräten ab und lädt diese in einen

temporären Zwischenspeicher.

Wenn anschließend eine Seite aufgerufen wird, greift sie nicht mehr direkt auf die Geräte zu, sondern

liest die Daten aus dem temporären Speicher aus. Dadurch wird die Datenanzeige deutlich schneller

und die Geräte werden entlastet.

2.7 25.NOV 2025
Heute haben wir das Design für das Dashboard ausgearbeitet. Zunächst haben wir gemeinsam die

Aufteilung der Oberfläche festgelegt und entschieden, welche Werte an welcher Position angezeigt

werden sollen. Dabei haben wir uns für eine Variante auf Basis eines einfachen HTML-Grundgerüsts

entschieden, da diese Lösung eine unkomplizierte und flexible Möglichkeit bietet, das Dashboard

übersichtlich zu gestalten.

Im Anschluss haben wir die einzelnen Tiles vorbereitet, die später die verschiedenen Messwerte

darstellen werden. Damit ist bereits die Grundlage geschaffen, um beim nächsten Mal die echten

Daten im Dashboard anzeigen zu lassen.

2.8 02.DEC 2025
Am 02. Dezember haben wir das Dashboard „smart“ gemacht, indem wir die Möglichkeit geschaffen

haben, eine JSON-Datei anzulegen. In dieser Datei kann die Struktur und Anordnung des Dashboards

konfiguriert werden, sodass es flexibel an unterschiedliche Anforderungen angepasst werden kann.

Durch diese Lösung lässt sich festlegen, welche Elemente angezeigt werden, wie sie angeordnet sind

und welche Werte dargestellt werden sollen. Dadurch kann das Dashboard je nach Anwendung optimal

gestaltet werden, ohne den Quellcode direkt ändern zu müssen.

2.9 09.DEC 2025
Am 09. Dezember wurde ein neuer Tab eingeführt, der Geräte-Tab. Dieser dient dazu, alle Geräte im

Netzwerk übersichtlich anzuzeigen, ohne diese direkt im Dashboard darstellen zu müssen.

Im Geräte-Tab werden die Stammdaten der einzelnen Geräte angezeigt. Dazu gehören unter anderem

die IP-Adressen, die Modbus-IDs sowie der Online- bzw. Offline-Status der Geräte. Dadurch ist es

möglich, den aktuellen Zustand des Netzwerks schnell zu überblicken und bei Bedarf gezielt

Informationen zu einzelnen Geräten abzurufen.

2.10 16.DEC 2025
Am 16. Dezember hat SCP das Plakat für den Tag der offenen Tür gestaltet. Zusätzlich wurden alle

notwendigen Vorbereitungen für die Präsentation getroffen. Dazu zählte unter anderem die inhaltliche

Abstimmung, die visuelle Aufbereitung sowie die Planung des Präsentationsablaufs, um das Projekt

verständlich und ansprechend vorstellen zu können.

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 6 | S e i t e

2.11 23.DEC 2025
Es wurde der aktuelle Projektstatus präsentiert. Dabei wurden der bisherige Fortschritt, die

umgesetzten Funktionen sowie der aktuelle Stand des Systems vorgestellt und erläutert.

2.12 13.JAN 2026
Wir haben einen Rittal-Verteiler besorgt, um unseren Demoaufbau für den Tag der offenen Tür zu

erweitern und anschaulicher darstellen zu können, womit wir uns beschäftigen.

Zunächst wurde die Montageplatte mechanisch vorbereitet. Dabei haben wir die notwendigen

Bohrungen durchgeführt sowie Hutschienen und Verdrahtungskanäle montiert. Damit wurde die

Grundlage für den weiteren elektrischen Aufbau und die übersichtliche Präsentation der Komponenten

geschaffen.

2.13 16.JAN 2026
Wir begonnen, den zuvor mechanisch aufgebauten Verteiler zu verdrahten. Zunächst wurde der

Verteiler in EPLAN gezeichnet, um einen übersichtlichen und korrekten Schaltplan zu erstellen.

Im Anschluss an die Planung erfolgte die Verdrahtung gemäß dem erstellten Plan, sodass der Verteiler

strukturiert und nachvollziehbar aufgebaut wurde. Dadurch konnte sichergestellt werden, dass alle

Anschlüsse korrekt ausgeführt und für spätere Erweiterungen gut dokumentiert sind.

2.14 17.JAN 2026
Verdrahtung des Verteilers war vollständig abgeschlossen. Anschließend haben wir mit den Tests

begonnen. Dazu wurden Lasten angeschlossen, um zu überprüfen, welche Werte die

Leitungsschutzschalter (LSS) tatsächlich erfassen und melden.

Zusätzlich wurde die Visualisierung einem Stresstest unterzogen, um sicherzustellen, dass auch bei

höherer Belastung alle Daten korrekt verarbeitet und angezeigt werden. Dabei konnte festgestellt

werden, dass das System stabil läuft und die Software fehlerfrei programmiert ist.

2.15 19.JAN 2026
Visualisierung wurde in ihrer finalen Form fertiggestellt und die zugehörige Dokumentation

geschrieben. Diese Arbeiten haben die gesamten drei Unterrichtsstunden in Anspruch genommen. In

der nächsten Zeit steht das vollständige Abschließen des Projekts an, damit im neuen Semester mit

einem neuen, größeren Projekt begonnen werden kann.

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 7 | S e i t e

3 PROJEKTDEFINITION
3.1 PROJEKTBESCHREIBUNG
Es soll untersucht werden, wie der Leitungsschutzschalter mit integriertem Fehlerlichtbogenschutz

vom Typ Siemens 5SV6016-7MC16 funktioniert und welche Eigenschaften und Schutzmechanismen

er bietet. Es soll ermittelt werden, welche Messgrößen verfügbar sind und in welchen

Anwendungsbereichen das Gerät sinnvoll eingesetzt werden kann. Darüber hinaus soll geprüft

werden, wie der Schalter mit einem drahtlosen Kommunikationsmodul verbunden werden kann, um

seine Daten weiterzuleiten und auszuwerten.

3.2 ZIELSETZUNG
Es soll das Ziel verfolgt werden, ein System zu erstellen, das den AFDD/LS-Schalter, das Connection-

Modul (7KN1111-0MC00) und das Power Monitoring Device (7KM2200-2EA40-1EA1) miteinander

verbindet. Es soll überprüft werden, wie die drahtlose Kommunikation eingerichtet werden kann,

welche Daten über Modbus TCP übertragen werden können und wie diese Daten visualisiert werden

können. Es soll eine praxisnahe Lösung entstehen, die die Schutzfunktionen, Schaltzustände und

elektrischen Messgrößen erfasst und darstellt.

3.3 PROJEKTUMFANG
Es soll analysiert werden, welche Funktionen der AFDD/LS-Schalter bereitstellt und wie das

Connection-Modul zur drahtlosen Übertragung der Daten eingesetzt werden kann. Es soll untersucht

werden, wie die Modbus TCP-Kommunikation aufgebaut wird und welche Daten ausgelesen werden

können. Es soll geprüft werden, wie das Power Monitoring Device in das Netzwerk integriert werden

kann, um zusätzliche Messwerte zu erfassen. Außerdem soll festgehalten werden, welche Schritte

notwendig sind, um die Geräte zu verbinden und die Daten in einer Visualisierung darzustellen.

3.4 ERWARTETES ERGEBNIS
Es soll ein funktionsfähiges System entstehen, das aus dem Leitungsschutzschalter, dem Connection-

Modul und dem Power Monitoring Device besteht. Es soll die Daten drahtlos übertragen und über

Modbus TCP verfügbar machen. Es soll möglich sein, Schaltzustände, Messwerte und

Schutzfunktionen in einer Visualisierung darzustellen. Das Projekt soll aufzeigen, wie moderne

elektrische Schutz- und Überwachungsgeräte miteinander vernetzt werden können.

3.5 DOKUMENTATION
Es soll eine ausführliche Dokumentation erstellt werden, die den Aufbau der Geräte, die Einrichtung

der drahtlosen Verbindung, die Modbus-Adressen und die Konfiguration der Visualisierung beschreibt.

Es soll eine Schritt-für-Schritt-Anleitung entstehen, die nachvollziehbar macht, wie die Geräte

verbunden werden, wie die Daten übertragen werden und wie die Visualisierung umgesetzt wird.

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 8 | S e i t e

4 DOKUMENTATION
4.1 SENTRON, MESSGERÄT, 7KM PAC2200 (7KM2200-2EA40-1EA1)
Siemens Industry Mall

4.1.1 PRODUKT BESCHREIBUNG [1]

Das SENTRON PAC2200 (7KM2200-2EA40-1EA1) ist ein elektronisches Energie- und

Leistungsmessgerät von Siemens, das für den Einsatz in dreiphasigen Niederspannungsnetzen

konzipiert ist. Es wird typischerweise in Schaltschränken oder Unterverteilungen auf einer 35-mm-

Hutschiene montiert und dient dort zur kontinuierlichen Erfassung, Anzeige und Weitergabe

elektrischer Mess- und Energiedaten. Sein Hauptzweck liegt in der transparenten Überwachung von

Energieflüssen, der Analyse des Verbrauchs sowie der Unterstützung von Energiemanagement- und

Automatisierungssystemen.

Das Gerät ist in der Lage, Spannungen, Ströme und daraus abgeleitete Leistungsgrößen in Echtzeit zu

messen. Bei der hier genannten Variante können Ströme bis 65 A direkt gemessen werden, ohne dass

externe Stromwandler erforderlich sind. Für größere Anlagen ist alternativ auch der Betrieb mit

externen Stromwandlern möglich, wodurch das Messgerät flexibel in unterschiedlichsten Netzgrößen

eingesetzt werden kann. Es unterstützt klassische dreiphasige Netzformen und erfasst sowohl Leiter-

Leiter- als auch Leiter-Neutral-Spannungen, wodurch eine vollständige Netzbewertung möglich ist.

Aus den gemessenen Grundgrößen berechnet das PAC2200 fortlaufend Wirkleistung, Blindleistung

und Scheinleistung, sowohl phasenweise als auch als Gesamtsumme. Zusätzlich werden Wirk-, Blind-

und Scheinenergie über die Zeit integriert und als Energiezählerstände gespeichert. Weitere wichtige

Netzparameter wie Frequenz und Leistungsfaktor (cos φ) werden ebenfalls erfasst. Die Messung

erfolgt als True-RMS-Messung, wodurch auch verzerrte oder nicht sinusförmige Strom- und

Spannungsverläufe korrekt ausgewertet werden können – ein entscheidender Vorteil in modernen

Anlagen mit Frequenzumrichtern, Schaltnetzteilen oder nichtlinearen Lasten.

Zur lokalen Bedienung und Kontrolle verfügt das Gerät über ein integriertes LCD-Display, auf dem

die aktuellen Messwerte, Energiezählerstände und Statusinformationen übersichtlich dargestellt

werden. Damit eignet sich das PAC2200 nicht nur für die zentrale Datenerfassung, sondern auch für

die direkte Vor-Ort-Diagnose durch Instandhaltung oder Betriebspersonal. Die Parametrierung und

Navigation erfolgt über Tasten am Gerät oder über angebundene Software-Systeme.

Ein wesentliches Merkmal des PAC2200 ist seine Kommunikationsfähigkeit. Das Gerät besitzt eine

integrierte Ethernet-Schnittstelle mit Modbus-TCP, über die Messwerte zyklisch an übergeordnete

Systeme übertragen werden können. Dadurch lässt es sich problemlos in SCADA-Systeme,

Gebäudeleittechnik, Energiemanagement-Software oder SPS-Umgebungen integrieren. In solchen

Systemen dienen die erfassten Daten unter anderem zur Lastüberwachung, zur Identifikation von

Energieverbrauchern, zur Analyse von Lastspitzen oder zur langfristigen Optimierung des

Energieeinsatzes.

Konstruktiv ist das PAC2200 kompakt aufgebaut und für den dauerhaften Einsatz in Verteilungen

ausgelegt. Die Front besitzt in der Regel eine Schutzart IP40, ausreichend für den

Schaltschrankbetrieb. Die Versorgung des Geräts erfolgt direkt aus dem zu messenden Netz, sodass

keine separate Hilfsspannung erforderlich ist. Die Anschlüsse sind als Schraubklemmen ausgeführt,

was eine sichere und normgerechte Verdrahtung ermöglicht.

Im Inneren eines solchen Messgeräts befinden sich typischerweise präzise Spannungs- und

Strommesseingänge, die über analoge Messschaltungen an A/D-Wandler angebunden sind. Ein

Mikrocontroller oder DSP verarbeitet die digitalisierten Signale, berechnet die elektrischen

Kenngrößen und verwaltet die Energiezähler. Zusätzlich sind Speicherbausteine für Zählerstände und

Parameter vorhanden sowie Kommunikationsmodule für Ethernet und gegebenenfalls weitere

https://mall.industry.siemens.com/mall/de/oeii/Catalog/Product/7KM2200-2EA40-1EA1

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 9 | S e i t e

Schnittstellen. Schutzbeschaltungen sorgen dafür, dass das Gerät gegen Überspannungen und

Störeinflüsse aus dem Netz abgesichert ist.

In der Praxis wird das SENTRON PAC2200 vor allem in Industrieanlagen, Zweck- und Bürogebäuden

sowie größeren Wohnanlagen eingesetzt. Dort übernimmt es Aufgaben wie Sub-Metering,

Energieverbrauchsüberwachung einzelner Anlagenteile, Unterstützung bei Energieaudits oder die

Bereitstellung von Messdaten für ein übergeordnetes Energiemanagement. Insgesamt stellt es ein

vielseitiges und technisch ausgereiftes Messgerät dar, das sowohl für die lokale Anzeige als auch für

die systemweite Energieanalyse geeignet ist.

4.1.2 MODBUS REGISTER

4.1.2.1 BASISGRÖßEN
Register

(Hex)

Register

(dezimal)

Register

Länge

Bezeichnung Format Einheit Min Max Default Bemerkung Zu-

griff

0x0001 1 2 Spannung UL1-N Float V - - - - R

0x0003 3 2 Spannung UL2-N Float V - - - - R

0x0005 5 2 Spannung UL3-N Float V - - - - R

0x0007 7 2 Spannung UL1-L2 Float V - - - - R

0x000D 13 2 Strom L1 Float A - - - - R

0x0019 25 2 Wirkleistung L1 Float W - - - - R

0x001B 27 2 Wirkleistung L2 Float W - - - - R

0x001D 29 2 Wirkleistung L3 Float W - - - - R

0x0025 37 2 Leistungsfaktor L1 Float - - - - - R

0x0037 55 2 Frequenz Float Hz - - - - R

0x0041 65 2 Wirkleistung Summe Float W - - - - R

4.1.2.2 ENERGIEZÄHLER
Register

(Hex)

Register

(dezimal)

Register

Länge

Bezeichnung Format Einheit Min Max Default Bemerkung Zu-

griff

0x0321 801 2 Wirkenergie Bezug T1 Float Wh - - - - R

0x0323 803 2 Wirkenergie Bezug T2 Float Wh - - - - R

0x0325 805 2 Wirkenergie Abgabe T1 Float Wh - - - - R

0x0327 807 2 Wirkenergie Abgabe T2 Float Wh - - - - R

0x00D7 215 2 Universalzähler U32 - - - - - RW

4.1.2.3 EINSTELLUNGEN UND PARAMETER
Register

(Hex)

Register

(dezimal)

Register

Länge

Bezeichnung Format Einheit Min Max Default Bemerkung Zu-

griff

0xC34F 49999 2 Nennstrom Anzeige U32 A 1 10000 - - RW

0xC351 50001 2 Anschlussart U32 W - - -

0=3P4W

4=1P2W RW

0xC35B 50011 2 Primärstrom (Wandler) U32 A 1 99999 - - RW

0xC35D 50013 2 Sekundärstrom (Wandler) U32 A - - - 1A oder 5A RW

0xC37F 50047 2 Dialogsprache U32 - - - -

0=DE,

1=EN RW

0xC43B 50235 2 Zeitzone S32 min - - - Offset in Minuten RW

0xC43D 50237 2 Ausgangs-Impulsteiler U32 kWh 0 1 -

0=1kWh

1=10kWh RW

4.1.2.4 KOMMANDOS UND STATUS
Register

(Hex)

Register

(dezimal)

Register

Länge

Bezeichnung Format Einheit Min Max Default Bemerkung Zu-

griff

0xEA61 60001 1 Geräte-Reset S8 - - - - Startet das Gerät neu W

0xEA66 60006 1 Tarif umschalten S8 - - - -

0=Haupt-

1=Nebentarif W

0xEA6A 60010 1 Reset Zähler S8 - - - - Tages-/Monatsspeicher W

0x006C 108 0* Parametrierung aktiv S8 - - - - Bit-Zugriff (FC 0x02) R

4.2 POWERCENTER 1100 (7KN1111-0MC00)
Siemens Industry Mall

4.2.1 PRODUKT BESCHREIBUNG [2]

Das SENTRON Powercenter 1100 (Bestellnummer 7KN1111-0MC00) ist ein Daten-Transceiver von

Siemens, der speziell dazu entwickelt wurde, kommunikations- und messfähige SENTRON-Geräte in

elektrischen Verteilungen zu vernetzen, zu sammeln und auszuwerten. Anders als klassische

Messgeräte wie das PAC2200, die direkt elektrische Größen erfassen, dient das Powercenter als

https://mall.industry.siemens.com/mall/de/oeii/Catalog/Product/7KN1111-0MC00

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 10 | S e i t e

zentrale Datensammel- und Kommunikationsschnittstelle, über die Mess- und Statusdaten aus

unterschiedlichsten Schutz-, Mess- und Schalteinrichtungen gebündelt, gespeichert und weitergereicht

werden können.

Mechanisch ist das Powercenter ebenfalls als DIN-Hutschienen-Modul ausgeführt, das in

Schaltschränken oder Verteilungen installiert wird. Es ist sehr kompakt (ca. 18 mm breit, 90 mm hoch,

70 mm tief) und besitzt eine Schutzart IP20, was seiner Eignung für den gewöhnlichen

Schaltschrankbetrieb entspricht. Die Versorgung erfolgt mit 24 V DC (SELV), was in industriellen

Installationen üblich ist, um Sicherheit und Stabilität der elektronischen Komponenten zu

gewährleisten.

Für die Kommunikation verfügt das Powercenter über mehrere Hardware-Schnittstellen: Es besitzt z.

B. zwei Ethernet-Ports, über die Daten nach außen übertragen werden können, sowie Bluetooth-

Funktechnik für die drahtlose Kommunikation direkt vor Ort. Die drahtlose Verbindung nutzt moderne

Bluetooth-Standards (z. B. Bluetooth 5.1) und ermöglicht es, Daten von bis zu 24 angeschlossenen

SENTRON-COM-Geräten innerhalb einer Verteilung zu empfangen. Diese Geräte können z. B.

messtechnisch erweiterte Schutzschalter, Fernantriebe oder Hilfsschalter sein, die über Funk ihre

Mess- und Statusinformationen an das Powercenter senden.

Im Betrieb übernimmt das Powercenter die Erfassung, Zwischenspeicherung und Weiterleitung von

Mess- und Statusdaten über einen Zeitraum von Tagen. Die gespeicherten Messwerte können lokal

über ein mobiles Endgerät per Bluetooth abgerufen werden oder über Industrie-

Kommunikationsprotokolle wie Modbus TCP und EtherNet/IP an übergeordnete Systeme (z. B.

SCADA, Energiemanagement-Software oder Gebäudeautomationssysteme) weitergeleitet werden.

Diese Protokollunterstützung ermöglicht eine zentrale Auswertung, Visualisierung und Archivierung

von Zustandsdaten über alle angeschlossenen Geräte hinweg.

Ein typisches Einsatzszenario ist die Integration vieler einzelner Mess- und Schutzgeräte in einer

einheitlichen Kommunikationsstruktur: statt jedes Gerät einzeln auszulesen oder verdrahtet zu

überwachen, fungiert das Powercenter als Kommunikationshub, der drahtlos Daten von

Schutzschaltern oder Messpunkten sammelt und sie zentral verfügbar macht. Dadurch lassen sich

Leistungs- und Zustandsdaten von ganzen Verteilernetzen oder Unterverteilungen effizienter

überwachen und verarbeiten.

Im Inneren des Powercenters befinden sich neben den Funk- und Ethernet-Modulen typischerweise ein

Prozessor zur Datenverarbeitung, ein Speicher für zwischengespeicherte Messdaten und

Konfigurationsinformationen, sowie Schnittstellen-Controller, die die drahtlose und kabelgebundene

Kommunikation steuern. Sicherheitsfunktionen wie verschlüsselte Kommunikation, Schreibschutz

gegen unerwünschte Änderungen und rollenbasierte Zugriffskontrolle sorgen für den sicheren Betrieb

im industriellen Umfeld.

Zusammengefasst ist das Powercenter 1100 ein zentrales Kommunikations- und Datenerfassungsgerät

für verteilte Schutz- und Messgeräte in modernen Niederspannungsnetzen. Es erweitert elektrische

Verteilungen um eine schichtübergreifende Kommunikationsfähigkeit, die lokale Mess- und

Statusdaten sammelt, speichert und netzwerkfähig bereitstellt – ein wichtiges Element im

Energiemanagement, Monitoring und in der digitalen Automatisierung elektrischer Anlagen.

4.2.2 MODBUS REGISTER

4.2.2.1 MESSWERTE
Register

(Hex)

Register

(dezimal)

Register

Länge

Bezeichnung Format Einheit Min Max Default Bemerkung Zu-

griff

0x0A00 2560 2 Alarm Zustand U32 - - - 0 Bitwert 0 = inaktiv, 1 = aktiv.

Bitfeld:

0: Alarm Betriebsstunden mit Belastungsstrom

1: Alarm Betriebsstunden,

RO

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 11 | S e i t e

2: Alarm Schaltspiele

3: Alarm Auslösezähler,

4: Alarm Temperaturüberschreitung

5: Alarm 1 Überstrom,

6: Alarm 2 Überstrom

7: Alarm 1 Unterstrom,

8: Alarm 2 Unterstrom

9: Alarm 1 Überspannung,

10: Alarm 2 Überspannung

11 : Alarm 1 Unterspannung,

12 : Alarm 2 Unterspannung

13: Schalter ausgelöst,

14: Auslösung Fehlerlichtbogen

15 : Auslösung Überspannung,

16: Alarm Kurzschlussauslösezähler

17: Alarm: AFDD Tripschwelle Unterschreitung.

18: Selbsttest fehlgeschlagen

19: Auslösung Unterspannung,

20: Auslösung Fehlerstrom

24-31: Geräte spezifisch.

RCA:

24: RCD Test Zähler Alarm,

25: ARD Fehler,

26: RCD Test fehlgeschlagen,

27: IR Test fehlgeschlagen,

28: IR Test Warnung

MCB RCM:

24: RCM AC Voralarm,

25: RCM AC Alarm,

26: RCM RMS Voralarm,

27: RCM RMS Alarm

MSP:

24: Überlastauslösung Alarm,

25: Kurzschlussauslösung Alarm

ECPD:

24: RCM Vorlarm,

25: RCM Alarm,

26: Verzögerte Auslösung,

27: Unverzögerte Auslösung,

28: ARD fehlgeschlagen,

29: Übertemperaturabschaltung,

30: Alarm für verzögerte Auslösungen,

31: Alarm EIN blockiert

0x0A12 2578 4 Betriebsstundenzähler gesamt FP64 s - - 0 - RO

0x0A3D 2621 1 BLE Empfangssignalstärke RSSI S16 dBm -127 20 - - RO

0x0A45 2629 4 Zeit- und Synchronisationsstatus U8[8] - - - 946684800 {uint32_t PARAM_DATE_TIME,

uint32_t SYNC_STATUS}

RO

0x0A49 2633 1 Aktiver Funkkanal U16 - 0 26 - - RO

0x0C00 2683 2 Temperatur FP32 °C 0 0 NaN - RO

0x0C02 3072 2 Mittelwert Temperatur FP32 °C 0 0 NaN - RO

4.2.2.2 PARAMETER
Register

(Hex)

Register

(dezimal)

Register

Länge

Bezeichnung Format Einheit Min Max Default Bemerkung Zu-

griff

0x0002 2 1 Hersteller ID U16 - - - 0x2A = 42 = Siemens RO

0x0003 3 10 Artikelnummer UCHAR

[20]

- - - - ASCII-Zeichen RO

0x000D 13 8 Seriennummer UCHAR

[16]

- - - - ASCII-Zeichen RO

0x0015 21 1 Hardware Version U16 - - - - - RO

0x0016 22 2 Software Version UCHAR

[4]

- - - - ASCII-Zeichen RO

0x001D 29 12 Anlagenkennzeichen (Name) UCHAR

[32]

- - - - ASCII-Zeichen RW

0x002D 45 11 Einbauort UCHAR

[22]

- - - - ASCII-Zeichen RW

0x0038 56 8 Installationsdatum UCHAR

[16]

- - - - ASCII-Zeichen RW

0x005E 94 1 Zielmarkt U16 - 1 3 1 1= IEC, 2=UL, 3=IEC+UL RO

0x0061 97 1 Blinkmodus zur Grätelokalisierung U16 - 0 1 0 0 = Blinken stoppen, 1 = Blinken für 10 Sekunden CMD

0x006D 109 1 Hardware Ausgabestand U16 - 0 10 0 0 = nicht verfügbar, 1 = Stand 1 usw. RO

0x0070 112 1 Gerätevariante U16 0 0xFFFE 0 0 0 = unbekannt,

1 = 5ST3 COM AS+FC,

2 = 3NA COM Fuse,

3 = 5SL6 COM MCB,

4 = 5SV6 COM AFDD,

5 = 5ST3 COM RCA Standard,

6 = 5ST3 COM RCA mit RCD/IR Test,

7 = 5SL6 COM MCB RCM,

8 = 5SV8 COM RCM,

RO

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 12 | S e i t e

9 = 3RV2 COM MSP,

10 = 5SV8 COM RCM (1 Kanal),

11= 5TY1 COM ECPD,

14 = POC1100,

16 = POC2000,

18 = 5TT4 COM DIDO

0x0A16 2582 1 Alarm der Betriebsstunden ein/aus U16 - 0 1 0 0 = aus, 1 = ein RW

0x0A17 2583 4 Grenzwert Betriebsstunden FP64 sec 60 9E+08 1,58E+08 - RW

0x0E05 3589 2 Grenzwert Temperaturüberschreitung FP32 °C 20 110

3NA COM:

120

Powercenter:

85

105

3NA COM:

115

Powercenter:

80

- RW

0x0E07 3591 2 Hysterese Temperatur Alarm FP32 % 0 10 10 - RW

0x0E09 3593 2 Letzte Diagnose Log OID U32 sec - - - - RO

0x0E58 3672 2 Letzte Message Log OID U32 - - - - - RO

4.2.2.3 KOMMUNIKATION
Register

(Hex)

Register

(dezimal)

Register

Länge

Bezeichnung Format Einheit Min Max Default Bemerkung Zu-

griff

0x0200 512 3 Ethernet MAC Adresse UCHAR

[6]

- - - ! - RO

0x0203 515 2 DHCP (automatische IP Vergabe) ein/aus U32 - 0 1 1 0 = DHCP aus, 1 = DHCP ein RW

0x0205 517 2 SNTP Server IP-Adresse U32 - 0 0xFFF

FFFFF

0.0.0.0 RW

0x0207 519 2 SNTP Client Mode U32 - 0 2 0 0 = aus, 1 = aktiv, 2 = broadcast RW

0x0208 521 2 Firewall ein/aus U32 - 0 1 0 0 = aus, 1 = ein RW

0x0209 523 2 IP Port Nummer U32 - 0 0xFFF

F

502 - RW

0x0210 525 2 Statische IP-Adresse U32 - 0 0xFFF

FFFFF

0.0.0.0 - RW

0x0211 527 2 Statische Subnetzmaske U32 - 0 0xFFF

FFFFF

255.255.

255.0

- RW

0x0212 529 2 Statisches Gateway U32 - 0 0xFFF

FFFFF

0.0.0.0 - RW

0x029D 669 2 Aktuelle IP-Adresse U32 - - - 0.0.0.0 - RO

0x029F 671 2 Aktuelle Subnetzmaske U32 - - - 0.0.0.0 - RO

0x02A1 673 2 Aktuelle Gateway Adresse U32 - - - 0.0.0.0 - RO

0x0300 768 1 Bluetooth Steuerung U16 - 1 3 ! 1= BLE ein, 2 = BLE aus, 3 = Passkey zurücksetzen CMD

0x0301 769 1 Bluetooth Status U16 - - - - - RO

0x0302 770 1 Bluetooth Sendeleistung S16 dBm -18 4 2 - RW

0x0303 771 3 Bluetooth Geräteadresse U8[6] - - - - - RO

0x0306 774 2 Bluetooth Passkey U32 - - - - - RW

0x0400 1024 2 Datum/Zeit (UTC) U32 - 0 0xFFF

FFFFF

9,5E+08 UNIX_TS seit 01.01.1970 RW

0x041A 1050 1 Funk Sendeleistung S13 dBm -18 2 0 - RW

0x044C 1100 1 Zähler Parameteränderung Endgerät 1 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x044D 1101 1 Zähler Parameteränderung Endgerät 2 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x044E 1102 1 Zähler Parameteränderung Endgerät 3 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x044F 1103 1 Zähler Parameteränderung Endgerät 4 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0450 1104 1 Zähler Parameteränderung Endgerät 5 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0451 1105 1 Zähler Parameteränderung Endgerät 6 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0452 1106 1 Zähler Parameteränderung Endgerät 7 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0453 1107 1 Zähler Parameteränderung Endgerät 8 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0454 1108 1 Zähler Parameteränderung Endgerät 9 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0455 1109 1 Zähler Parameteränderung Endgerät 10 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0456 1110 1 Zähler Parameteränderung Endgerät 11 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0457 1111 1 Zähler Parameteränderung Endgerät 12 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0458 1112 1 Zähler Parameteränderung Endgerät 13 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0459 1113 1 Zähler Parameteränderung Endgerät 14 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x045A 1114 1 Zähler Parameteränderung Endgerät 15 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x045B 1115 1 Zähler Parameteränderung Endgerät 16 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x045C 1116 1 Zähler Parameteränderung Endgerät 17 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 13 | S e i t e

0x045D 1117 1 Zähler Parameteränderung Endgerät 18 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x045E 1118 1 Zähler Parameteränderung Endgerät 19 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x045F 1119 1 Zähler Parameteränderung Endgerät 20 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0460 1120 1 Zähler Parameteränderung Endgerät 21 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0461 1121 1 Zähler Parameteränderung Endgerät 22 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0462 1122 1 Zähler Parameteränderung Endgerät 23 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0463 1123 1 Zähler Parameteränderung Endgerät 24 U16 - 0 0xFFFF 0 Zählt hoch, wenn am Endgerät einen Parameter

verändert wird

RO

0x0464 1124 1 Zähler Parameteränderung Powercenter U16 - 0 0xFFFF 0 Zählt hoch, wenn am Powercenter einen Parameter verändert wird RO

0x04B1 1201 1 Schalter Status Endgerät 1 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04B2 1202 1 Schalter Status Endgerät 2 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04B3 1203 1 Schalter Status Endgerät 3 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04B4 1204 1 Schalter Status Endgerät 4 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04B5 1205 1 Schalter Status Endgerät 5 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04B6 1206 1 Schalter Status Endgerät 6 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04B7 1207 1 Schalter Status Endgerät 7 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04B8 1208 1 Schalter Status Endgerät 8 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04B9 1209 1 Schalter Status Endgerät 9 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04BA 1210 1 Schalter Status Endgerät 10 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04BB 1211 1 Schalter Status Endgerät 11 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04BC 1212 1 Schalter Status Endgerät 12 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 14 | S e i t e

0x04BD 1213 1 Schalter Status Endgerät 13 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04BE 1214 1 Schalter Status Endgerät 14 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04BF 1215 1 Schalter Status Endgerät 15 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04C0 1216 1 Schalter Status Endgerät 16 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04C1 1217 1 Schalter Status Endgerät 17 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04C2 1218 1 Schalter Status Endgerät 18 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04C3 1219 1 Schalter Status Endgerät 19 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04C4 1220 1 Schalter Status Endgerät 20 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04C5 1221 1 Schalter Status Endgerät 21 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

 1222 1 Schalter Status Endgerät 22 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04C6 1223 1 Schalter Status Endgerät 23 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x04C7 1224 1 Schalter Status Endgerät 24 U16 - - - - 0 = unbekannt

1 = AUS

2 = EIN

3 = Ausgelöst

4= reserve

5 = Standby

RO

0x0744 1860 1 Manuelle Funkkanalauswahl ein/aus U16 - 0 1 0 0 = aus

1 = ein

Nur vor 1. Pairing einstellbar

Ab Version 2.0 verfügbar

RW

0x0745 1861 1 Funkkanalauswahl U16 - 11 26 11 Nur vor 1. Pairing einstellbar

Ab Version 2.0 verfügbar

RW

0x4000 16384 1 Pairing Status (1) U16

- - - - 0 = nicht verfügbar (MAC/Installationscode

fehlen)

1 = Pairing läuft

2 = Pairing abgeschlossen

4 = Pairing fehlgeschlagen

5 = Pairing Timeout

9 = Entfernen läuft

11 = Entfernen timeout RO

0x4001 16385 1 Pairing Status (2) U16 - - - - siehe Registernr. 16384 RO

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 15 | S e i t e

0x4002 16386 1 Pairing Status (3) U16 - - - - siehe Registernr. 16384 RO

0x4003 16387 1 Pairing Status (4) U16 - - - - siehe Registernr. 16384 RO

0x4004 16388 1 Pairing Status (5) U16 - - - - siehe Registernr. 16384 RO

0x4005 16389 1 Pairing Status (6) U16 - - - - siehe Registernr. 16384 RO

0x4006 16390 1 Pairing Status (7) U16 - - - - siehe Registernr. 16384 RO

0x4007 16391 1 Pairing Status (8) U16 - - - - siehe Registernr. 16384 RO

0x4008 16392 1 Pairing Status (9) U16 - - - - siehe Registernr. 16384 RO

0x4009 16393 1 Pairing Status (10) U16 - - - - siehe Registernr. 16384 RO

0x400A 16394 1 Pairing Status (11) U16 - - - - siehe Registernr. 16384 RO

0x400B 16395 1 Pairing Status (12) U16 - - - - siehe Registernr. 16384 RO

0x400C 16396 1 Pairing Status (13) U16 - - - - siehe Registernr. 16384 RO

0x400D 16397 1 Pairing Status (14) U16 - - - - siehe Registernr. 16384 RO

0x400E 16398 1 Pairing Status (15) U16 - - - - siehe Registernr. 16384 RO

0x400F 16399 1 Pairing Status (16) U16 - - - - siehe Registernr. 16384 RO

0x4010 16400 1 Pairing Status (17) U16 - - - - siehe Registernr. 16384 RO

0x4011 16401 1 Pairing Status (18) U16 - - - - siehe Registernr. 16384 RO

0x4012 16402 1 Pairing Status (19) U16 - - - - siehe Registernr. 16384 RO

0x4013 16403 1 Pairing Status (20) U16 - - - - siehe Registernr. 16384 RO

0x4014 16404 1 Pairing Status (21) U16 - - - - siehe Registernr. 16384 RO

0x4015 16405 1 Pairing Status (22) U16 - - - - siehe Registernr. 16384 RO

0x4016 16406 1 Pairing Status (23) U16 - - - - siehe Registernr. 16384 RO

0x4017 16407 1 Pairing Status (24) U16 - - - - siehe Registernr. 16384 RO

0x4064 16484 1 Device Status (1) U16

- - - - 0=IDLE (Kein Endgerät gepaired)

1 Offline,

2 = Verbinden läuft,

3 = Verbunden RO

0x4065 16485 1 Device Status (2) U16 - - - - siehe Registernr. 16484 RO

0x4066 16486 1 Device Status (3) U16 - - - - siehe Registernr. 16484 RO

0x4067 16487 1 Device Status (4) U16 - - - - siehe Registernr. 16484 RO

0x4068 16488 1 Device Status (5) U16 - - - - siehe Registernr. 16484 RO

0x4069 16489 1 Device Status (6) U16 - - - - siehe Registernr. 16484 RO

0x406A 16490 1 Device Status (7) U16 - - - - siehe Registernr. 16484 RO

0x406B 16491 1 Device Status (8) U16 - - - - siehe Registernr. 16484 RO

0x406C 16492 1 Device Status (9) U16 - - - - siehe Registernr. 16484 RO

0x406D 16493 1 Device Status (10) U16 - - - - siehe Registernr. 16484 RO

0x406E 16494 1 Device Status (11) U16 - - - - siehe Registernr. 16484 RO

0x406F 16495 1 Device Status (12) U16 - - - - siehe Registernr. 16484 RO

0x4070 16496 1 Device Status (13) U16 - - - - siehe Registernr. 16484 RO

0x4071 16497 1 Device Status (14) U16 - - - - siehe Registernr. 16484 RO

0x4072 16498 1 Device Status (15) U16 - - - - siehe Registernr. 16484 RO

0x4073 16499 1 Device Status (16) U16 - - - - siehe Registernr. 16484 RO

0x4074 16500 1 Device Status (17) U16 - - - - siehe Registernr. 16484 RO

0x4075 16501 1 Device Status (18) U16 - - - - siehe Registernr. 16484 RO

0x4076 16502 1 Device Status (19) U16 - - - - siehe Registernr. 16484 RO

0x4077 16503 1 Device Status (20) U16 - - - - siehe Registernr. 16484 RO

0x4078 16504 1 Device Status (21) U16 - - - - siehe Registernr. 16484 RO

0x4079 16505 1 Device Status (22) U16 - - - - siehe Registernr. 16484 RO

0x407A 16506 1 Device Status (23) U16 - - - - siehe Registernr. 16484 RO

0x407B 16507 1 Device Status (24) U16 - - - - siehe Registernr. 16484 RO

0x45DC 17884 50 Koppeln/Entfernen des Endgeräts U8[100]

-

0 3 !

0 = Keine Aktion,

1 = Start Pairing,

3 = Gerät entfernen/Pairing abbrechen

(Beispiel: Pairing starten für End Gerät 1 und

3: Byte 1 & 3 auf den Wert 1 setzen, die

anderen sind 0) CMD

0x460E 17934 2 Identifikation Status (1) U32

- - - - 0 = Initial,

1 = Gerät unbekannt,

2 = Fehler bitte Gerät entfernen,

3 = Gerät erkannt RO

0x4610 17936 2 Identifikation Status (2) U32 - - - - siehe Registernr. 17934 RO

0x4612 17938 2 Identifikation Status (3) U32 - - - - siehe Registernr. 17934 RO

0x4614 17940 2 Identifikation Status (4) U32 - - - - siehe Registernr. 17934 RO

0x4616 17942 2 Identifikation Status (5) U32 - - - - siehe Registernr. 17934 RO

0x4618 17944 2 Identifikation Status (6) U32 - - - - siehe Registernr. 17934 RO

0x461A 17946 2 Identifikation Status (7) U32 - - - - siehe Registernr. 17934 RO

0x461C 17948 2 Identifikation Status (8) U32 - - - - siehe Registernr. 17934 RO

0x461E 17950 2 Identifikation Status (9) U32 - - - - siehe Registernr. 17934 RO

0x4620 17952 2 Identifikation Status (10) U32 - - - - siehe Registernr. 17934 RO

0x4622 17954 2 Identifikation Status (11) U32 - - - - siehe Registernr. 17934 RO

0x4624 17956 2 Identifikation Status (12) U32 - - - - siehe Registernr. 17934 RO

0x4626 17958 2 Identifikation Status (13) U32 - - - - siehe Registernr. 17934 RO

0x4628 17960 2 Identifikation Status (14) U32 - - - - siehe Registernr. 17934 RO

0x462A 17962 2 Identifikation Status (15) U32 - - - - siehe Registernr. 17934 RO

0x462C 17964 2 Identifikation Status (16) U32 - - - - siehe Registernr. 17934 RO

0x462E 17966 2 Identifikation Status (17) U32 - - - - siehe Registernr. 17934 RO

0x4630 17968 2 Identifikation Status (18) U32 - - - - siehe Registernr. 17934 RO

0x4632 17970 2 Identifikation Status (19) U32 - - - - siehe Registernr. 17934 RO

0x4634 17972 2 Identifikation Status (20) U32 - - - - siehe Registernr. 17934 RO

0x4636 17974 2 Identifikation Status (21) U32 - - - - siehe Registernr. 17934 RO

0x4638 17976 2 Identifikation Status (22) U32 - - - - siehe Registernr. 17934 RO

0x463A 17978 2 Identifikation Status (23) U32 - - - - siehe Registernr. 17934 RO

0x463C 17980 2 Identifikation Status (24) U32 - - - - siehe Registernr. 17934 RO

0x1000 4096 2

Status der aktuellen Delayed-

Acknowledge-Anfrage U32

- - - - 0x00000000: Idle. Kein Schreib-Prozess

laufend, Warten auf Prozess RW

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 16 | S e i t e

0x00000001: Läuft. Endgerät beschäftigt.

Schhreibanfrage wird abgelehnt.

0x00000002: Erfolg: Schhreibanfrage wird

abgelehnt bis in IDLE State versetzt.

0x00000003: Fehlgeschlagen.

Schhreibanfrage wird abgelehnt bis in IDLE

State versetzt.

0x1002 4098 121 Delayed Response Log Information UCHAR[242] - - - - RO

0x107B 4219 2

Status der aktuellen Delayed-

Acknowledge Read Log Anfrage U32

- - - - 0x00000000: Idle. Kein Lese-Prozess laufend,

Warten auf Prozess

0x00000001: Läuft. Endgerät beschäftigt.

Schhreibanfrage wird abgelehnt.

0x00000002: Erfolg: Schhreibanfrage wird

abgelehnt bis in IDLE State versetzt.

0x00000003: Fehlgeschlagen.

Schhreibanfrage wird abgelehnt bis in IDLE

State versetzt. RW

0x4A00 18944 1 Status lokales Usermanagement U8

- - - - Bitwert:

0=nein,

1=ja

Bitfeld:

0: Mind.

1 Superuser angelegt? RO

0x4A02 18946 1 Schreibschutz Status U8

- - - - Bitwert:

0=deaktiviert,

1=aktiviert

Bitfeld:

0: Mechanischer Schreibschutz RO

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 17 | S e i t e

4.3 BRANDSCHUTZSCHALTER-LS-KOMBI MESSFUNKTION (5SV6016-7MC16)
Siemens Industry Mall

4.3.1 PRODUKT BESCHREIBUNG [3]

Das Siemens 5SV6016-7MC16 ist ein moderner Brandschutzschalter bzw. kombinierter

Leitungsschutzschalter mit integrierter Mess- und Kommunikationsfunktion aus der SENTRON-Serie

von Siemens. Dieser Schalter vereint in einem kompakten, 1-TE-Breiten-Gerät mehrere Schutz- und

Monitoring-Funktionen, wie sie in klassischen Niederspannungs-Haupt- und Unterverteilungen

gefordert werden.

Als Kombinationsgerät schützt er elektrische Stromkreise vor Kurzschluss und Überlast wie ein

herkömmlicher Leitungsschutzschalter, nutzt dabei aber zusätzlich eine eingebaute Brandschutz-

Erkennung für sogenannte Fehlerlichtbögen (AFDD). Diese Technologie erkennt gefährliche

Lichtbögen im Stromkreis, die bei herkömmlichen Schutzschaltern oft nicht geortet werden, und

unterbricht den Strom bevor ein Brand entstehen kann. Das schließt eine Schutzlücke, die bei

normalen Leitungsschutzschaltern bestehen würde.

Das Gerät ist 1+N-polig ausgeführt und für 230 V-Wechselstromnetze mit einem Bemessungsstrom

von 16 A ausgelegt; es besitzt die Auslöse-Charakteristik C, was bedeutet, dass es bei Kurzschluss-

und Überlastzuständen entsprechend der C-Kennlinie anspricht. Das Bemessungsschaltvermögen liegt

bei ca. 6 kA, was typisch für Schutzgeräte in Wohn- und Gewerbeinstallationen ist.

Neben den Schutzfunktionen bringt der 5SV6016-7MC16 eine Messfunktion mit, die es erlaubt,

elektrische Größen wie Strom oder eventuell über ausgewählte Parameter auch Energie- bzw.

Leistungswerte zu erfassen. Diese Messdaten können lokal genutzt oder über einen

Kommunikationskanal weitergegeben werden. Die Kommunikation ist in diesem Gerät drahtlos

möglich (z. B. Funk), sodass es z. B. in ein zentrales Energiemanagement- oder Monitoring-System

eingebunden werden kann. Für den Aufbau solcher Kommunikationsstrukturen wird meist ein

Datentransceiver wie das oben beschriebene Powercenter eingesetzt, das mehrere dieser Schutz- und

Messgeräte vernetzen kann.

Mechanisch entspricht der Schalter dem Standard für Schaltschränke und Verteilungen: er wird auf

einer Hutschiene montiert, besitzt eine Schutzart, die für den Schaltschrankinnenraum geeignet ist

(typisch IP20) und nimmt mit einer Breite von nur eine Teilungseinheit sehr wenig Platz ein. Zur

flexiblen Erweiterung stehen Zubehör-Module wie Hilfs- oder Fehlersignalschalter zur Verfügung, die

zusätzliche Schalt- oder Signalwege realisieren können.

Zusammengefasst stellt dieser Brandschutzschalter-LS-Kombi ein multifunktionales Schutz- und

Messgerät dar, das über die reine Überstrom-Absicherung hinausgeht, indem es frühzeitig

Brandrisiken erkennt und gleichzeitig Mess- und Kommunikationsfunktionen integriert, die in

vernetzten, modernen Installationen zur Analyse und Steuerung elektrischer Anlagen wichtig sind.

4.3.2 MODBUS REGISTER

4.3.2.1 MESSWERTE
Register

(Hex)

Register

(dezimal)

Register

Länge

Bezeichnung Format Einheit Min Max Default Bemerkung Zu-

griff

0x0A00 2560 2 Alarm Zustand U32 - - - 0 Bitwert 0 = inaktiv, 1 = aktiv.

Bitfeld:

0: Alarm Betriebsstunden mit Belastungsstrom

1: Alarm Betriebsstunden,

2: Alarm Schaltspiele

3: Alarm Auslösezähler,

4: Alarm Temperaturüberschreitung

5: Alarm 1 Überstrom,

6: Alarm 2 Überstrom

7: Alarm 1 Unterstrom,

8: Alarm 2 Unterstrom

RO

https://mall.industry.siemens.com/mall/de/oeii/Catalog/Product/5SV6016-7MC16

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 18 | S e i t e

9: Alarm 1 Überspannung,

10: Alarm 2 Überspannung

11 : Alarm 1 Unterspannung,

12 : Alarm 2 Unterspannung

13: Schalter ausgelöst,

14: Auslösung Fehlerlichtbogen

15 : Auslösung Überspannung,

16: Alarm Kurzschlussauslösezähler

17: Alarm: AFDD Tripschwelle Unterschreitung.

18: Selbsttest fehlgeschlagen

19: Auslösung Unterspannung,

20: Auslösung Fehlerstrom

24-31: Geräte spezifisch.

RCA:

24: RCD Test Zähler Alarm,

25: ARD Fehler,

26: RCD Test fehlgeschlagen,

27: IR Test fehlgeschlagen,

28: IR Test Warnung

MCB RCM:

24: RCM AC Voralarm,

25: RCM AC Alarm,

26: RCM RMS Voralarm,

27: RCM RMS Alarm

MSP:

24: Überlastauslösung Alarm,

25: Kurzschlussauslösung Alarm

ECPD:

24: RCM Vorlarm,

25: RCM Alarm,

26: Verzögerte Auslösung,

27: Unverzögerte Auslösung,

28: ARD fehlgeschlagen,

29: Übertemperaturabschaltung,

30: Alarm für verzögerte Auslösungen,

31: Alarm EIN blockiert

0x0A02 2562 4 Betriebsstundenzähler mit Belastungsstrom FP64 s - - 0 - RO

0x0A12 2578 4 Betriebsstundenzähler gesamt FP64 s - - 0 - RO

0x0A21 2593 2 Anzahl mechanischer Schaltspiele FP32 - - - 0 - RO

0x0A2A 2602 2 Anzahl der Auslösungen FP32 - - - 0 - RO

0x0A3E 2622 1 Funk Empfangssignalstärke RSSI S16 dBm -127 20 - - RO

0x0A40 2624 2 Anzahl der Kurzschlussauslösungen FP32 - - - - - RO

0x0C00 3072 2 Temperatur FP32 °C - - NaN - RO

0x0C02 3074 2 Mittelwert Temperatur FP32 °C - - NaN - RO

0x0C04 3076 2 Strom FP32 A - - NaN - RO

0x0C06 3078 2 Mittelwert Strom FP32 A - - NaN - RO

0x0C08 3080 2 Maximalwert Strom FP32 A - - NaN - RO

0x0C0A 3082 2 Spannung FP32 V - - NaN - RO

0x0C0C 3084 2 Netzfrequenz FP32 Hz - - NaN - RO

0x0C0E 3086 2 Wirkleistung FP32 W - - NaN - RO

0x0C10 3088 2 Scheinleistung FP32 VA - - NaN - RO

0x0C12 3090 2 Gesamtblindleistung Qtot FP32 var - - NaN - RO

0x0C14 3092 2 Leistungsfaktor FP32 - - - NaN - RO

0x0C16 3094 4 Bezogene Wirkenergie FP64 Wh - - NaN - RO

0x0C1A 3098 4 Abgegebene Wirkenergie FP64 Wh - - NaN - RO

0x0C1E 3102 4 Bezogene Blindenergie FP64 varh - - NaN - RO

0x0C22 3106 4 Abgegebene Blindenergie FP64 varh - - NaN - RO

0x0C26 3110 1 Schalter Status U16 - - - 0 0 = Status unbekannt

1 = Aus ohne Auslösung

2 = Ein

3 =Ausgelöst

4 =Ausgelöst, aber Hebel ein/blockiert

5 = Standby (für ECPD)

6 = Standby tripped (für ECPD)

RO

4.3.2.2 PARAMETER
Register

(Hex)

Register

(dezimal)

Register

Länge

Bezeichnung Format Einheit Min Max Default Bemerkung Zu-

griff

0x0002 2 1 Hersteller ID U16 - - - 0x2A = 42 = Siemens RO

0x0003 3 10 Artikelnummer UCHAR

[20]

- - - - ASCII-Zeichen RO

0x000D 13 8 Seriennummer UCHAR

[16]

- - - - ASCII-Zeichen RO

0x0015 21 1 Hardware Version U16 - - - - - RO

0x0016 22 2 Software Version UCHAR

[4]

- - - - ASCII-Zeichen RO

0x001D 29 12 Anlagenkennzeichen (Name) UCHAR - - - - ASCII-Zeichen RW

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 19 | S e i t e

[32]

0x002D 45 11 Einbauort UCHAR

[22]

- - - - ASCII-Zeichen RW

0x0038 56 8 Installationsdatum UCHAR

[16]

- - - - ASCII-Zeichen RW

0x005E 94 1 Zielmarkt U16 - 1 3 1 1= IEC

2=UL

3=IEC+UL

RO

0x005F 95 1 Bemessungsstrom In U16 A - - - - RO

0x0060 96

1

Auslösekennlinie U16

- 0 3 0 0 = Nicht definiert

1 = Characteristic A

2 = Characteristic B

3 = Characteristic C

RO

0x0061 97 1 Blinkmodus zur Grätelokalisierung U16 - 0 1 0 0 = Blinken stoppen, 1 = Blinken für 10 Sekunden CMD

0x006D 109 1 Hardware Ausgabestand U16 - 0 10 0 0 = nicht verfügbar, 1 = Stand 1 usw. RO

0x0070 112 1 Gerätevariante U16 0 0xFFFE 0 0 0 = unbekannt,

1 = 5ST3 COM AS+FC,

2 = 3NA COM Fuse,

3 = 5SL6 COM MCB,

4 = 5SV6 COM AFDD,

5 = 5ST3 COM RCA Standard,

6 = 5ST3 COM RCA mit RCD/IR Test,

7 = 5SL6 COM MCB RCM,

8 = 5SV8 COM RCM,

9 = 3RV2 COM MSP,

10 = 5SV8 COM RCM (1 Kanal),

11= 5TY1 COM ECPD,

14 = POC1100,

16 = POC2000,

18 = 5TT4 COM DIDO

RO

0x0091 145 1 Phasen Information U16

-

0 3 0

0 = nicht verfügbar

1 = L1

2 = L2

3 = L3 RW

0x0A06 2566 1

Betriebsstunden mit Belastungsstrom

Alarm ein/aus U16

-

0 1 0

0 = aus

1 = ein RW

0x0A07 2567 1

Minimaler Belastungsstrom ab dem der

Betriebsstundenzähler aktiv wird U16 % 5 90 70

-

RW

0x0A08 2568 4

Grenzwert Betriebsstunden mit

Belastungsstrom FP64 s

 -

RW

0x0A16 2582 1 Alarm der Betriebsstunden ein/aus U16 - 0 1 0 0 = aus

1 = ein

RW

0x0A17 2583 4 Grenzwert Betriebsstunden FP64 sec 60 9E+08 1,58E+08 - RW

0x0A23 2595 1 Alarm für Schaltspiele ein/aus U16 - 0 1 0 0 = aus, 1 = ein RW

0x0A24 2596 2 Grenzwert mechanische Schaltspiele FP32 - 0 10000 1000 RW

0x0A2C 2604 1 Auslösezähler Alarm ein/aus U16 - 0 1 0 0 = aus, 1 = ein RW

0x0A2D 2605 2 Grenzwert Auslösezähler FP32 - 1 10000 30 RW

0x0A42 2626 1 Kurzschlussauslösezähler Alarm ein/aus U16 - 0 1 1 0 = aus, 1 = ein RW

0x0A43 2627 2 Grenzwert Kurzschlussauslösungen FP32

-

1 50

6

3RV2 COM:

3 RW

0x0E02 3586 2

Zeitperiode für die Mittelwertbildung der

Temperatur U32

sec

60 3600 600 RW

0x0E04 3588 1 Temperatur Alarm ein/aus U16

-

0 1 1

0 = aus

1 = ein RW

0x0E05 3589 2 Grenzwert Temperaturüberschreitung FP32 °C 20 110

3NA COM:

120

Powercenter:

85

105

3NA COM:

115

Powercenter:

80

- RW

0x0E07 3591 2 Hysterese Temperatur Alarm FP32 % 0 10 10 - RW

0x0E09 3593 2 Letzte Diagnose Log OID U32 sec - - - - RO

0x0E0D 3597 1

Zeitperiode für die Mittelwertbildung des

Stroms U16 s 3 3600 10 - RW

0x0E0E 3598 1 Stromüberschreitung Alarm1 ein/aus U16 0 1 1

0 = aus

1 = ein RW

0x0E0F 3599 2 Grenzwert Stromüberschreitung Alarm1 FP32 % 0 150 80 In % vom Nennstrom In RW

0x0E11 3601 2 Hysterese Stromüberschreitung Alarm1 FP32 % 0 10 5 - RW

0x0E17 3607 1 Stromüberschreitung Alarm2 ein/aus U16 - 0 1 0

0 = aus

1 = ein RW

0x0E18 3608 2 Grenzwert Stromüberschreitung Alarm2 FP32 % 0 150 90 - RW

0x0E1A 3610 2 Hysterese Stromüberschreitung Alarm2 FP32 % 0 10 5 - RW

0x0E20 3616 1 Stromunterschreitung Alarm1 ein/aus U16 - 0 1 0

0 = aus

1 = ein RW

0x0E21 3617 2 Grenzwert Stromunterschreitung Alarm1 FP32 % 0 105 10 - RW

0x0E23 3619 2 Hysterese Stromunterschreitung Alarm1 FP32 % 0 10 5 - RW

0x0E29 3625 1 Stromunterschreitung Alarm2 ein/aus U16 - 0 1 0

0 = aus

1 = ein RW

0x0E2A 3626 2 Grenzwert Stromunterschreitung Alarm2 FP32 % 0 105 5 In % vom Nennstrom In RW

0x0E2C 3628 2 Hysterese Stromunterschreitung Alarm2 FP32 % 0 10 5 - RW

0x0E32 3634 1 Spannungsüberschreitung Alarm1 ein/aus U16 - 0 1 0

0 = aus

1 = ein RW

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 20 | S e i t e

0x0E33 3635 2

Grenzwert Spannungsüberschreitung

Alarm1 FP32 V 220 270 250 - RW

0x0E35 3637 2

Hysterese Spannungsüberschreitung

Alarm1 FP32 % 0 10 10 - RW

0x0E3B 3643 1 Spannungsüberschreitung Alarm2 ein/aus U16 - 0 1 0

0 = aus

1 = ein RW

0x0E3C 3644 2

Grenzwert Spannungsüberschreitung

Alarm2 FP32 V 220 270 270 - RW

0x0E3E 3646 2

Hysterese Spannungsüberschreitung

Alarm2 FP32 % 0 10 10 - RW

0x0E44 3652 1

Spannungsunterschreitung Alarm1

ein/aus U16 - 0 1 0

0 = aus

1 = ein RW

0x0E45 3653 2

Grenzwert Spannungsunterschreitung

Alarm1 FP32 V 150 230 195 - RW

0x0E47 3655 2

Hysterese Spannungsunterschreitung

Alarm1 FP32 % 0 10 10 - RW

0x0E4D 3661 1

Spannungsunterschreitung Alarm2

ein/aus U16 0 1 0

0 = aus

1 = ein RW

0x0E4E 3662 2

Grenzwert Spannungsunterschreitung

Alarm2 FP32 V 150 230 185 - RW

0x0E50 3664 2

Hysterese Spannungsunterschreitung

Alarm2 FP32 % 0 10 10 - RW

0x0E56 3670 1 Rücksetzen der Energiezähler U16 - 0x0815 0x0815 ! 0x0815 void CMD

0x0E57 3671 1 Letzte Trip Log OID U16 - - - - - RO

0x0E58 3672 2 Letzte Message Log OID U32 - - - - - RO

0x0E5A 3674 1 Energieflussrichtung U16 - 0 1 0

0 = unten -> oben, 1 = oben -

> unten

Beeinflusst Leistung, Energie

und Leistungsfaktor RW

0x0E5B 3675 1 Rücksetzen der Extremwerte U16 - 0x0815 0x0815 ! 0x0815 void CMD

4.3.2.3 KOMMUNIKATION
Register

(Hex)

Register

(dezimal)

Register

Länge

Bezeichnung Format Einheit Min Max Default Bemerkung Zu-

griff

0x041A 1050 1 Funk Sendeleistung S16 dBm -18 2 0 - RW

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 21 | S e i t e

5 VISUALISIERUNG
5.1 C# ASP.NET MVC
Ein C# ASP.NET-Webserver mit der Model-View-Controller -Schematik (kurz: MVC) ist ein

modernes, leistungsfähiges Framework von Microsoft, mit dem sich dynamische, datenbankgestützte

Webanwendungen entwickeln lassen.

ASP.NET MVC trennt den Aufbau einer Webanwendung in drei klar definierte Schichten:

Model, View und Controller. Diese Trennung, auch bekannt als Separation of Concerns, sorgt dafür,

dass Logik, Darstellung und Daten unabhängig voneinander entwickelt und gewartet werden können.

5.1.1 MODEL (DATEN- UND GESCHÄFTSLOGIK)

Das Model repräsentiert die Daten und die Regeln, nach denen diese verarbeitet werden. Es enthält

Klassen, die zum Beispiel Entitäten (z. B. User, Product, Order) darstellen, sowie die Geschäftslogik,

Validierungen und Datenbankzugriffe. In einer typischen ASP.NET-Anwendung wird das Model

häufig mit Entity Framework (EF) verbunden. EF ist ein sogenannter ORM (Object-Relational

Mapper), der Objekte automatisch mit Datenbanktabellen verknüpft. Dadurch kann man in C# mit

Objekten arbeiten, während EF im Hintergrund SQL-Befehle generiert.

C#
public class Product
{
 public int Id { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
}

Diese Klasse kann direkt mit einer Datenbanktabelle Products verbunden werden. Änderungen am

Objekt werden über EF automatisch in der Datenbank gespeichert.

5.1.2 CONTROLLER (STEUERLOGIK UND ANWENDUNGSFLUSS)

Der Controller ist die zentrale Steuereinheit einer ASP.NET MVC-Anwendung. Er empfängt Anfragen

(Requests) vom Webbrowser, entscheidet, was passieren soll, ruft ggf. Daten aus dem Model ab,

verarbeitet sie und gibt sie an eine View weiter. Jeder Controller ist eine C#-Klasse, die von der

Basisklasse Controller erbt, und besteht aus sogenannten Actions – Methoden, die eine bestimmte

Funktion oder Seite repräsentieren.

C#
public class ProductController : Controller
{
 public IActionResult Index()
 {
 var products = _context.Products.ToList();
 return View(products);
 }

 public IActionResult Details(int id)
 {
 var product = _context.Products.Find(id);
 return View(product);
 }
}

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 22 | S e i t e

Der Controller ist also die Brücke zwischen Daten (Model) und Darstellung (View).

5.1.3 VIEW (BENUTZEROBERFLÄCHE / DARSTELLUNG)

Die View ist für die Darstellung der Inhalte im Browser zuständig. Sie enthält HTML, CSS und oft

auch Razor-Syntax eine Mischung aus HTML und C#, die serverseitig verarbeitet wird, bevor die

Seite an den Browser gesendet wird.

C#
@model IEnumerable<Product>

<h1>Produkte</h1>

@foreach (var p in Model)
{
 @p.Name – @p.Price €
}

Die View erhält vom Controller eine Liste von Produkten (Model) und zeigt sie dynamisch an.

Das bedeutet: Änderungen in der Datenbank erscheinen automatisch in der Weboberfläche, ohne dass

man die HTML-Datei selbst anpassen muss.

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 23 | S e i t e

5.2 GREENTECLAB VISUALISIERUNG (C#)

5.2.1 FRONTEND

HTML
<!doctype html>
<html lang="de">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>GreenTecLab Device Manager </title>
 <link rel="stylesheet" href="~/css/dashboard/layout.css" />
 @RenderSection("Stylesheet", required: false)
</head>
<body>

 <div class="dashboard-wrapper">
 <header>
 <div class="brand">
 <svg width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor"
stroke-width="2" stroke-linecap="round" stroke-linejoin="round" style="color: var(--primary)">
 <rect x="2" y="2" width="20" height="8" rx="2" ry="2"></rect>
 <rect x="2" y="14" width="20" height="8" rx="2" ry="2"></rect>
 <line x1="6" y1="6" x2="6.01" y2="6"></line>
 <line x1="6" y1="18" x2="6.01" y2="18"></line>
 </svg>
 GreenTecLab Device Manager
 </div>
 <div id="timestamp" style="color: var(--text-muted); font-size: 12px;"></div>
 </header>

 @RenderBody()

 </div>

 @RenderSection("Scripts", required: false)
</body>
</html>

Der gezeigte Code ist ein HTML-Grundgerüst für ein Dashboard, das speziell für ASP.NET Core bzw.

Razor Pages entwickelt wurde. Es beginnt mit der Deklaration des Dokuments als HTML5 und legt

die Sprache auf Deutsch fest, was für Barrierefreiheit und Suchmaschinen relevant ist. Im <head>-

Bereich wird die Zeichencodierung auf UTF-8 gesetzt, sodass Umlaute und Sonderzeichen korrekt

dargestellt werden, und ein viewport-Meta-Tag sorgt dafür, dass die Seite auf mobilen Geräten korrekt

skaliert wird. Außerdem wird der Seitentitel definiert und eine zentrale CSS-Datei eingebunden, die

das Layout des Dashboards steuert. Durch die Razor-Direktive @RenderSection("Stylesheet",

required: false) können einzelne Seiten zusätzliche Stylesheets hinzufügen, ohne dass sie für alle

Seiten verpflichtend sind.

Im <body>-Bereich wird die gesamte Seite von einem Container dashboard-wrapper umschlossen, der

das Layout zusammenhält. Direkt am Anfang befindet sich ein Header, der das Branding enthält: ein

SVG-Icon, das aus zwei Rechtecken und Linien besteht, kombiniert mit dem Text „GreenTecLab

Device Manager“. Das Icon und der Text nutzen CSS-Variablen, um Farben konsistent aus dem

Designsystem zu übernehmen. Zusätzlich gibt es ein Element für einen Zeitstempel, das aktuell leer

ist, aber später vermutlich per JavaScript gefüllt wird. Der zentrale Inhaltsbereich der Seite wird über

die Razor-Direktive @RenderBody() eingebunden, sodass jede einzelne View ihren eigenen Inhalt in

diesem Layout darstellen kann. Abschließend ermöglicht @RenderSection("Scripts", required: false)

das Einfügen zusätzlicher JavaScript-Dateien nur auf den Seiten, die sie benötigen, wodurch das

Layout flexibel und wiederverwendbar bleibt.

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 24 | S e i t e

Insgesamt stellt dieser Code eine saubere, modulare Basis für ein Dashboard dar, bei dem Header,

Styles und Scripts zentral verwaltet werden, während der dynamische Inhalt der jeweiligen Seiten über

Razor-Platzhalter eingebunden wird. Das Layout ist responsiv, visuell ansprechend durch SVG-Icons

und CSS-Variablen, und auf Erweiterbarkeit ausgelegt, da einzelne Views problemlos zusätzliche

Styles oder Scripts hinzufügen können.

CSS
:root {
 --primary: #16a34a;
 --primary-light: #f0fdf4;
 --border-color: #e2e8f0;
 --text-dark: #0f172a;
 --text-muted: #64748b;
 --bg-main: #f8fafc;
 --white: #ffffff;
}

:root {
 --m-primary: #16a34a;
 --m-primary-dark: #15803d;
 --m-bg-main: #f1f5f9;
 --m-surface: #ffffff;
 --m-border: #cbd5e1;
 --m-text: #1e293b;
 --m-text-light: #64748b;
 --m-code-bg: #1e293b;
}

* {
 box-sizing: border-box;
 margin: 0;
 padding: 0;
 font-family: "Inter", -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif;
}

body {
 background-color: var(--bg-main);
 color: var(--text-dark);
 font-size: 14px;
}

/* Layout */
.dashboard-wrapper {
 max-width: 1400px;
 margin: 0 auto;
 padding: 20px;
}

header {
 display: flex;
 justify-content: space-between;
 align-items: center;
 margin-bottom: 24px;
 padding-bottom: 16px;
 border-bottom: 1px solid var(--border-color);
}

.brand {
 display: flex;
 align-items: center;
 gap: 10px;
 font-weight: 700;

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 25 | S e i t e

 letter-spacing: -0.5px;
 text-transform: uppercase;
}

C#
@using SmarterLeitungsschutzschalter.ModBus
@model dashboardModel
@{
 Layout = "_DashboardLayout";
}

@section Stylesheet {
 <link rel="stylesheet" href="~/css/dashboard/index.css" />
}

@section Scripts {
 <script src="~/js/dashboard/index.js"></script>
}

Dieser Block bindet den Modbus-Namespace ein, damit Geräte und deren Daten verwendet werden

können. Mit @model dashboardModel wird das Datenmodell für die View festgelegt, das alle

Geräteinformationen enthält. Layout = "_DashboardLayout" sorgt dafür, dass die View in das zentrale

Dashboard-Layout eingebettet wird, inklusive Header, Styles und Scripts.

Es wird ein spezifisches CSS für diese Seite eingebunden. Über Razor Sections können Styles nur für

diese View geladen werden, ohne das Hauptlayout zu verändern.

Sowie ein Abschnitt der JavaScript-Dateien lädt, die für interaktive Funktionen wie Suchfilter, Modals

oder dynamische Updates nötig sind. Auch hier werden die Scripts nur auf dieser Seite ausgeführt.

C#
<div class="toolbar">
 <input type="text" id="searchInput" class="search-input" placeholder="Nach Gerätename suchen...">
 <div style="flex-grow: 1;"></div>
 <div style="font-size: 12px; color: var(--text-muted); align-self: center;">
 Total: 0 Units
 </div>
</div>

<div class="table-container">
 <table>
 <thead> ... </thead>
 <tbody>
 @foreach(ModbusTcpDevice device in Model.ModbusDevices)
 {
 // Zeile für jedes Gerät
 }
 </tbody>
 </table>
</div>

Die Toolbar enthält ein Suchfeld für Gerätesuche und zeigt rechts die Gesamtanzahl der Geräte an.

Flexbox sorgt dafür, dass das Suchfeld links bleibt und die Zählung rechts ausgerichtet ist.

In dieser Tabelle werden alle Geräte aus dem Model aufgelistet. Jede Zeile zeigt die UID, den

Gerätenamen, den Arbeitsplatz (als Text), den Status (online/offline), den letzten Sync-Zeitpunkt und

einen Button zum Öffnen des Modals mit Details. Statuspunkte werden farblich hervorgehoben, die

UID ist monospace für bessere Lesbarkeit, und die Buttons enthalten kleine SVG-Icons.

C#
<div id="@uuid" class="modal">

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 26 | S e i t e

 <div class="modal-content">
 <div class="modal-header"> ... </div>
 <div class="tab-bar"> ... </div>
 <div class="modal-body" id="modalDataContent">
 @foreach(var dp in device.DeviceData)
 {
 <div>@Html.Raw(dp.DataName)
 @Html.Raw(dp.Value + " " + dp.Unit)
 </div>
 }
 </div>
 </div>
</div>

Für jedes Gerät wird ein Modal-Fenster erzeugt, das beim Klick auf „VIEW DATA“ geöffnet wird. Es

zeigt den Gerätenamen, die UID und alle technischen Datenpunkte in einer übersichtlichen Liste. Das

Modal enthält einen Close-Button mit SVG-Icon. Tabs (aktuell nur „GENERAL“) erlauben später die

Erweiterung um weitere Kategorien.

JavaScript
function openDetails(uuid) {
 // alle Modals holen
 const modals = document.querySelectorAll('.modal');

 // zuerst alle schließen
 modals.forEach(modal => {
 modal.style.display = 'none';
 });

 // gewünschtes Modal öffnen
 const targetModal = document.getElementById(uuid);
 if (targetModal) {
 targetModal.style.display = 'flex';
 } else {
 console.warn('Modal nicht gefunden:', uuid);
 }
}

function closeModal() {
 const modals = document.querySelectorAll('.modal');
 modals.forEach(modal => {
 modal.style.display = 'none';
 });
}

document.addEventListener('DOMContentLoaded', () => {
 const searchInput = document.getElementById('searchInput');
 const rows = document.querySelectorAll('.table-container tbody tr');
 const countElement = document.getElementById('count');

 function filterTable() {
 const query = searchInput.value.toLowerCase().trim();
 let visibleCount = 0;

 rows.forEach(row => {
 // NUR Gerätebezeichnung (2. Spalte)
 const deviceName = row.cells[1].textContent.toLowerCase();

 if (deviceName.includes(query)) {
 row.style.display = '';
 visibleCount++;
 } else {
 row.style.display = 'none';

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 27 | S e i t e

 }
 });

 countElement.textContent = visibleCount;
 }

 // Initiale Anzeige
 countElement.textContent = rows.length;

 // Live-Suche
 searchInput.addEventListener('input', filterTable);
});

Es gibt die Funktion openDetails(uuid). Sie wird aufgerufen, wenn ein Nutzer den „VIEW DATA“-

Button einer Gerätetabelle anklickt. Zuerst werden alle Modals auf der Seite abgefragt

(document.querySelectorAll('.modal')) und geschlossen, um sicherzustellen, dass nur ein Modal

gleichzeitig sichtbar ist. Anschließend wird das Modal mit der übergebenen uuid gesucht. Wenn das

passende Modal existiert, wird es angezeigt, indem sein display-Stil auf flex gesetzt wird. Ist das

Modal nicht vorhanden, wird eine Warnung in der Konsole ausgegeben.

Die Funktion closeModal() dient dazu, alle geöffneten Modals wieder zu schließen. Sie greift ebenfalls

auf alle .modal-Elemente zu und setzt deren display-Stil auf none. Das sorgt dafür, dass der Nutzer

jederzeit die Detailansicht schließen kann, ohne dass ein spezielles Modal gezielt adressiert werden

muss.

Der Hauptteil des Codes läuft innerhalb eines DOMContentLoaded-Events, also nachdem die Seite

vollständig geladen ist. Hier werden das Suchfeld (searchInput), alle Tabellenzeilen (rows) und das

Element für die Anzeige der Gesamtanzahl (countElement) abgefragt.

Die Funktion filterTable() sorgt für die Live-Suche in der Tabelle. Sie liest den aktuellen Suchbegriff

ein, wandelt ihn in Kleinbuchstaben um und entfernt überflüssige Leerzeichen. Dann durchläuft sie

jede Tabellenzeile und prüft, ob der Gerätename in der zweiten Spalte den Suchbegriff enthält. Passt

er, bleibt die Zeile sichtbar; passt er nicht, wird sie ausgeblendet (display: 'none'). Gleichzeitig wird

gezählt, wie viele Geräte aktuell angezeigt werden, und die Gesamtanzeige (countElement)

entsprechend aktualisiert.

Zum Schluss wird die Tabelle initial gezählt (countElement.textContent = rows.length) und ein Event-

Listener auf das Suchfeld gesetzt, sodass die Filterung live bei jeder Eingabe durchgeführt wird.

5.2.2 BACKEND

5.2.2.1 MODBUS TCP AUSLESEN

Der gesamte Code ist asynchron, damit UI-Threads oder Steuerlogik nicht blockiert werden.

C#
using System;
using System.Collections.Generic;
using System.IO;
using System.Net.Sockets;
using System.Text.Json;
using System.Text.Json.Serialization;
using System.Threading.Tasks;

namespace SmarterLeitungsschutzschalter.ModBus
{
 public class ModbusTcpDevice : IDisposable
 {

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 28 | S e i t e

 }
}

Dieser Abschnitt bindet alle .NET-Bibliotheken ein, die für die Implementierung notwendig sind.

System.Net.Sockets stellt die TCP-Kommunikation bereit, auf der Modbus TCP vollständig basiert.

System.Text.Json wird genutzt, um Gerätekonfigurationen und Registerdefinitionen als JSON zu laden

oder zu speichern. System.Threading.Tasks ist essenziell, da alle Netzwerkoperationen asynchron

ausgeführt werden, um Blockierungen zu vermeiden. Die übrigen Namespaces liefern Basistypen,

Collections und Fehlerklassen, die im weiteren Verlauf benötigt werden.

Der Namespace ordnet den Code klar einem Modbus-Modul innerhalb eines größeren Projekts zu.

Dadurch wird die Modbus-Kommunikation logisch von anderen Bereichen wie UI, Logik oder

Datenbank getrennt. Das ist besonders wichtig in technischen Projekten, da Protokollcode oft

unabhängig wiederverwendet oder ausgetauscht wird.

Diese Klasse stellt ein einzelnes Modbus-TCP-Gerät dar. Sie übernimmt alle Aufgaben von der

Verbindungsverwaltung bis zum Lesen der Register. Die Implementierung von IDisposable zeigt, dass

die Klasse Ressourcen besitzt, die explizit freigegeben werden müssen – konkret eine TCP-

Verbindung und einen Netzwerkstream.

C#
[JsonIgnore]
public string DeviceName { get; set; }

public string Ip { get; set; }
public int Port { get; set; }
public byte UnitId { get; set; }
public int Workplace { get; set; }

Hier werden die grundlegenden Eigenschaften des Modbus-Geräts definiert. Die IP-Adresse und der

Port bestimmen das Netzwerkziel, wobei Port 502 der Standard für Modbus TCP ist. Die UnitId ist die

Modbus-Slave-Adresse, die vor allem bei Gateways relevant ist. DeviceName und Workplace dienen

rein der logischen Organisation innerhalb der Anwendung und werden nicht serialisiert, da sie nichts

mit dem Protokoll selbst zu tun haben.

C#
[JsonIgnore]
private TcpClient? client;

[JsonIgnore]
private NetworkStream? stream;

Diese beiden Felder repräsentieren die aktive TCP-Verbindung. Sie werden bewusst nicht serialisiert,

da eine offene Verbindung kein persistenter Zustand ist. Der TcpClient kapselt den Socket, während

der NetworkStream den eigentlichen Datenstrom für Lese- und Schreiboperationen bereitstellt.

C#
public List<ModbusDataPoint> DataPoints { get; set; } = new();

Diese Liste beschreibt, welche Register aus dem Gerät gelesen werden sollen. Jeder Eintrag enthält

Startadresse, Länge, Datenformat und Einheit. Technisch handelt es sich um ein Mapping zwischen

Modbus-Registeradressen und semantischen Messwerten der Anwendung.

C#
[JsonIgnore]
public string DataPointsJson
{
 get
 {
 return JsonSerializer.Serialize(

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 29 | S e i t e

 DataPoints,
 new JsonSerializerOptions { WriteIndented = true }
);
 }
}

Diese Eigenschaft erzeugt zur Laufzeit eine JSON-Darstellung der aktuellen Presets. Sie ist hilfreich

für Debugging, Logging oder das Weiterreichen der Konfiguration an andere Komponenten, ohne die

komplette Geräteklasse zu serialisieren.

C#
[JsonIgnore]
public List<ModbusDeviceReceivingData> DeviceData = new();

Hier werden die tatsächlich gelesenen und bereits interpretierten Werte gespeichert. Diese Daten sind

flüchtig und ändern sich ständig, weshalb sie ebenfalls nicht serialisiert werden.

C#
[JsonIgnore]
public bool IsConnected => client?.Connected ?? false;

Diese Eigenschaft prüft, ob aktuell eine TCP-Verbindung besteht. Sie greift direkt auf den Status des

TcpClient zu und liefert einen sicheren booleschen Wert, auch wenn noch keine Verbindung existiert.

C#
public ModbusTcpDevice(string ip = "0.0.0.0", int port = 502, byte unitId = 1)
{
 this.Ip = ip;
 this.Port = port;
 this.UnitId = unitId;
}

Der Konstruktor setzt lediglich Standardwerte und baut keine Verbindung auf. Das ist technisch

korrekt, da Netzwerkoperationen fehlschlagen können und explizit gestartet werden sollten.

C#
public void LoadPresetFromJson(string json)
{
 List<ModbusDataPoint> dataPoints =
 JsonSerializer.Deserialize<List<ModbusDataPoint>>(json);

 if (dataPoints == null)
 throw new InvalidDataException("Preset JSON could not be loaded.");

 DataPoints = dataPoints;
}

Dieser Code lädt eine komplette Registerdefinition aus JSON. Schlägt die Deserialisierung fehl, wird

sofort ein Fehler ausgelöst, sodass keine inkonsistente Konfiguration verwendet werden kann.

C#
public async Task<object> ReadPresetValueAsync(string dataPointName)
{
 if (DataPoints.Count == 0)
 throw new InvalidOperationException("No preset loaded.");
 if (stream == null)
 throw new InvalidOperationException("Not connected. Call ConnectAsync() first.");

 ModbusDataPoint dp = DataPoints.Find(p => p.Title.Equals(dataPointName,
StringComparison.OrdinalIgnoreCase));
 if (dp == null)
 throw new KeyNotFoundException($"No data point named '{dataPointName}' found.");

 ushort[] registers = await ReadHoldingRegistersAsync(dp.StartRegister, dp.Length);

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 30 | S e i t e

 return ModbusDataConverter.Convert(registers, dp.Format);
}

Diese Methode sucht einen Datenpunkt anhand seines Namens, liest die zugehörigen Register und

übergibt die Rohdaten an einen Konverter. Die Kommunikationslogik bleibt dabei strikt von der

Dateninterpretation getrennt.

C#
public async Task ConnectAsync()
{
 if (IsConnected)
 return;

 try
 {
 client = new TcpClient();
 await client.ConnectAsync(Ip, Port);
 stream = client.GetStream();
 }
 catch (Exception ex)
 {
 // Wrap the low-level exception with contextual information.
 throw new Exception($"Error connecting to {Ip}:{Port}: {ex.Message}", ex);
 }
}

Hier wird der TCP-Socket geöffnet und der Netzwerkstream erzeugt. Die Verbindung bleibt bestehen

und wird für alle folgenden Modbus-Anfragen genutzt, was die Performance deutlich verbessert.

C#
public void Disconnect()
{
 stream?.Close();
 client?.Close();
 stream = null;
 client = null;
}

Dieser Abschnitt sorgt für eine saubere Freigabe aller Netzwerkressourcen. Er ist wichtig für

Reconnects, Programmende oder Fehlerfälle.

C#
public async Task<ushort[]> ReadHoldingRegistersAsync(ushort startAddress, ushort numRegisters)
{
 if (stream == null)
 throw new InvalidOperationException("Not connected. Call ConnectAsync() first.");

 byte[] request = CreateReadHoldingRegistersRequest(UnitId, startAddress, numRegisters);
 await stream.WriteAsync(request, 0, request.Length);

 // Read MBAP + PDU header (9 bytes) first
 byte[] header = new byte[9];
 await ReadExactAsync(stream, header, 0, header.Length);

 // The 9th byte (index 8) is the byte count for the data part
 byte byteCount = header[8];
 int expectedLength = 9 + byteCount;

 // Read the remainder of the response and merge with header
 byte[] response = new byte[expectedLength];
 Array.Copy(header, response, header.Length);
 await ReadExactAsync(stream, response, header.Length, expectedLength - header.Length);

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 31 | S e i t e

 // Convert response bytes into ushort registers
 ushort[] registers = new ushort[numRegisters];
 for (int i = 0; i < numRegisters; i++)
 {
 int index = 9 + i * 2;
 if (index + 1 >= response.Length)
 break;
 registers[i] = (ushort)((response[index] << 8) | response[index + 1]);
 }

 return registers;
}

Hier wird ein vollständiger Modbus-TCP-Frame erzeugt und über den Stream gesendet. Anschließend

wird die Antwort in mehreren Schritten zuverlässig eingelesen.

C#
private static async Task ReadExactAsync(NetworkStream stream, byte[] buffer, int offset, int count)
{
 int read = 0;
 while (read < count)
 {
 int bytes = await stream.ReadAsync(buffer, offset + read, count - read);
 if (bytes == 0)
 throw new Exception("Connection unexpectedly closed.");
 read += bytes;
 }
}

Diese Methode stellt sicher, dass exakt die erwartete Anzahl an Bytes gelesen wird. Sie ist notwendig,

da TCP die Daten fragmentiert liefern kann und ReadAsync keine Garantie für vollständige Frames

gibt.

C#
private static byte[] CreateReadHoldingRegistersRequest(byte unitId, ushort startAddress, ushort
numRegisters)
{
 byte functionCode = 0x03;
 ushort transactionId = 1;

 byte[] frame = new byte[12];
 // MBAP header
 frame[0] = (byte)(transactionId >> 8);
 frame[1] = (byte)(transactionId & 0xFF);
 frame[2] = 0x00;
 frame[3] = 0x00;
 frame[4] = 0x00;
 frame[5] = 0x06;
 // PDU
 frame[6] = unitId;
 frame[7] = functionCode;
 frame[8] = (byte)(startAddress >> 8);
 frame[9] = (byte)(startAddress & 0xFF);
 frame[10] = (byte)(numRegisters >> 8);
 frame[11] = (byte)(numRegisters & 0xFF);
 return frame;
}

Diese Methode erzeugt einen vollständigen Modbus-TCP-Request zum Lesen von Holding-Registern

gemäß der offiziellen Modbus-TCP-Spezifikation. Das Ergebnis ist ein exakt 12 Byte langer Frame,

der aus zwei logisch getrennten Bereichen besteht: dem MBAP-Header (Modbus Application Protocol

Header) und der PDU (Protocol Data Unit). Modbus TCP kapselt das eigentliche Modbus-Protokoll

vollständig in TCP, weshalb keine CRC benötigt wird – die Integrität übernimmt TCP selbst.

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 32 | S e i t e

Der Parameter unitId legt fest, welches Modbus-Gerät adressiert wird. In reinem Modbus TCP ist

dieser Wert oft 1 oder 0xFF, er wird aber zwingend benötigt, wenn ein TCP-Gateway mehrere serielle

Modbus-RTU-Slaves bedient. Die Parameter startAddress und numRegisters definieren den

Registerbereich, der aus dem Holding-Register-Adressraum gelesen werden soll.

Der functionCode wird auf 0x03 gesetzt. Dieser Wert ist nicht beliebig, sondern fest im Modbus-

Standard definiert. Funktionscode 3 bedeutet „Read Holding Registers“. Andere Codes wie 0x01 oder

0x04 würden andere Speicherbereiche adressieren, beispielsweise Coils oder Input Registers. Dass

hier explizit 0x03 verwendet wird, zeigt, dass ausschließlich Holding-Register gelesen werden sollen,

also der typische 4xxxx-Adressraum.

Die transactionId ist ein 16-Bit-Wert, der zur Zuordnung von Anfrage und Antwort dient. In Modbus

TCP kann ein Client mehrere Anfragen parallel senden. Der Server kopiert diese Transaction ID

unverändert in die Antwort zurück, sodass der Client weiß, zu welcher Anfrage die Antwort gehört. In

diesem Code ist sie fest auf 1 gesetzt, was technisch korrekt ist, solange keine parallelen Requests

gesendet werden. Würde man mehrere gleichzeitige Anfragen unterstützen, müsste diese ID

inkrementiert oder verwaltet werden.

Das Byte-Array frame wird mit einer Länge von 12 Bytes angelegt, da ein Modbus-TCP-Read-

Request immer genau diese Länge hat: 7 Bytes MBAP-Header plus 5 Bytes PDU.

Die ersten beiden Bytes frame[0] und frame[1] enthalten die Transaction ID im Big-Endian-Format.

Das bedeutet, dass das höherwertige Byte zuerst übertragen wird. Durch das Rechts-Shift um 8 Bits

wird das High-Byte extrahiert, während das Maskieren mit 0xFF das Low-Byte liefert. Diese Byte-

Reihenfolge ist durch die Modbus-Spezifikation zwingend vorgegeben.

Die Bytes frame[2] und frame[3] bilden die sogenannte Protocol ID. Dieser Wert ist bei Modbus TCP

immer 0x0000. Er existiert ausschließlich, um theoretisch andere Protokolle über denselben

Mechanismus zu kapseln. In der Praxis wird er immer auf Null gesetzt, und jedes andere Gerät

erwartet exakt diesen Wert.

Die Bytes frame[4] und frame[5] definieren das Length-Feld des MBAP-Headers. Dieses Feld gibt an,

wie viele Bytes nach diesem Feld noch folgen. In diesem Fall sind das exakt 6 Bytes: 1 Byte Unit ID

plus 5 Bytes PDU. Deshalb wird hier der Wert 0x0006 gesetzt. Auch dieses Feld ist Big-Endian

codiert, weshalb zuerst 0x00 und danach 0x06 geschrieben wird. Dieses Längenfeld ist entscheidend,

damit der Empfänger weiß, wie viele Bytes er aus dem TCP-Stream lesen muss.

Ab frame[6] beginnt die eigentliche Modbus-PDU. Das erste Byte der PDU ist die unitId. Sie

identifiziert das Zielgerät hinter dem TCP-Endpunkt. Auch bei reinem Modbus TCP ohne Gateway

darf dieses Feld nicht fehlen, da es Teil des Protokolls ist.

Das nächste Byte frame[7] enthält den zuvor definierten Funktionscode 0x03. Der Server wertet dieses

Byte aus, um zu entscheiden, welche Aktion auszuführen ist. Falls ein Gerät diesen Funktionscode

nicht unterstützt oder ein Fehler auftritt, wird in der Antwort ein Fehlercode zurückgegeben, bei dem

das höchstwertige Bit des Funktionscodes gesetzt ist.

Die Bytes frame[8] und frame[9] enthalten die Startadresse der Register. Auch hier wird wieder Big-

Endian verwendet. Das bedeutet, dass zuerst das High-Byte der Adresse gesendet wird, danach das

Low-Byte. Die Adresse bezieht sich nicht auf die 4xxxx-Notation, sondern auf den nullbasierten

Registerindex, wie er im Modbus-Protokoll definiert ist. Das ist eine häufige Fehlerquelle, weshalb die

exakte Byte-Aufteilung hier entscheidend ist.

Die letzten beiden Bytes frame[10] und frame[11] definieren die Anzahl der zu lesenden Register.

Auch dieser Wert ist ein 16-Bit-Unsigned-Integer im Big-Endian-Format. Der Server nutzt diesen

Wert, um zu bestimmen, wie viele Register er aus seinem Speicherbereich lesen und in der Antwort

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 33 | S e i t e

zurücksenden soll. Die maximale Anzahl ist durch den Modbus-Standard begrenzt und wird vom

Server validiert.

Am Ende gibt die Methode das vollständig aufgebaute Byte-Array zurück. Dieses Array kann direkt

über einen TCP-Stream gesendet werden, ohne weitere Verarbeitung. Jeder einzelne Bit-Shift, jede

Byte-Position und jeder feste Wert ist dabei direkt durch die Modbus-TCP-Spezifikation vorgegeben

und nicht austauschbar, ohne die Protokollkonformität zu verlieren.

C#
public void Dispose() => Disconnect();

Damit wird sichergestellt, dass die Klasse auch bei Verwendung in einem using-Block ihre Ressourcen

korrekt freigibt.

C#
// DTO describing a data point in the device preset (title, register start, length, format, unit).
public class ModbusDataPoint
{
 public string Title { get; set; } = string.Empty;
 public ushort StartRegister { get; set; }
 public ushort Length { get; set; }
 public string Format { get; set; } = string.Empty;
 public string Unit { get; set; } = string.Empty;
}

C#
// DTO used to hold a received data point value and metadata after reading from a device.
public class ModbusDeviceReceivingData
{
 public string DeviceName { get; set; } = string.Empty;
 public string DataName { get; set; } = string.Empty;
 public object Value { get; set; }
 public string Unit { get; set; } = string.Empty;
}

Diese Klassen enthalten keine Logik, sondern beschreiben ausschließlich Datenstrukturen. Sie trennen

Konfiguration (was wird gelesen) von Ergebnis (was wurde gelesen) und sind damit essenziell für eine

saubere Architektur.

5.2.2.2 JSON-FILE

JSON
{
 "Leitungsschutzschalter 1": {
 "Workplace": 1,
 "Ip": "192.168.0.111",
 "Port": 502,
 "UnitId": 1,
 "DataPoints": [
 {
 "Title": "Temperatur",
 "StartRegister": 3071,
 "Length": 2,
 "Format": "FP32",
 "Unit": "°C"
 },
 {
 "Title": "Mittelwert Temperatur",
 "StartRegister": 3073,

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 34 | S e i t e

 "Length": 2,
 "Format": "FP32",
 "Unit": "°C"
 },
 ...
]
 },
 "Leitungsschutzschalter 2": {
 "Workplace": 1,
 "Ip": "192.168.0.111",
 "Port": 502,
 "UnitId": 2,
 "DataPoints": [...]
 },
 "Leitungsschutzschalter 3": {
 "Workplace": 1,
 "Ip": "192.168.0.111",
 "Port": 502,
 "UnitId": 3,
 "DataPoints": [...]
 },
 "POC1100 1": {
 "Workplace": 1,
 "Ip": "192.168.0.111",
 "Port": 502,
 "UnitId": 255,
 "DataPoints": [...]
 },
 "PAC2200 1": {
 "Workplace": 1,
 "Ip": "192.168.0.112",
 "Port": 502,
 "UnitId": 1,
 "DataPoints": [...]
 },
 "Leitungsschutzschalter 1": {
 "Workplace": 2,
 "Ip": "192.168.0.121",
 "Port": 502,
 "UnitId": 2,
 "DataPoints": [...]
 },
 "Leitungsschutzschalter 2": {
 "Workplace": 2,
 "Ip": "192.168.0.121",
 "Port": 502,
 "UnitId": 2,
 "DataPoints": [...]
 },
 "Leitungsschutzschalter 3": {
 "Workplace": 2,
 "Ip": "192.168.0.121",
 "Port": 502,
 "UnitId": 2,
 "DataPoints": [...]
 },
 "POC1100 2": {
 "Workplace": 2,
 "Ip": "192.168.0.121",
 "Port": 502,
 "UnitId": 255,
 "DataPoints": [...]
 },

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 35 | S e i t e

 "PAC2200 2": {
 "Workplace": 2,
 "Ip": "192.168.0.122",
 "Port": 502,
 "UnitId": 1,
 "DataPoints": [...]
 },
 ...
}

Die JSON-Datei ist im Grunde eine hierarchische Struktur, in der jedes Gerät in einem Netzwerk als

eigener Eintrag organisiert ist. Auf der obersten Ebene stehen die Gerätenamen wie

„Leitungsschutzschalter 1“, „PAC2200 1“ oder „POC1100 1“ als Schlüssel, hinter denen jeweils ein

Objekt liegt, das alle relevanten Informationen zu diesem Gerät enthält. Jedes dieser Geräteobjekte

enthält zunächst allgemeine Angaben wie den Arbeitsplatz (Workplace), an dem es installiert ist, die

IP-Adresse (Ip), über die es erreichbar ist, den Kommunikationsport (Port), meistens 502, was auf

Modbus TCP hindeutet, sowie die Geräte-ID (UnitId), die typischerweise als Modbus-Slave-Adresse

dient.

Ein besonders wichtiger Teil ist das Feld DataPoints, das ein Array von Messgrößen oder

Datenpunkten enthält, die das Gerät liefert. Jeder Datenpunkt ist wiederum ein Objekt mit einem Titel

(Title), der den Messwert beschreibt, einer Startadresse (StartRegister), die angibt, ab welchem

Register der Wert gelesen wird, einer Länge (Length) in Registern, die den Speicherbereich definiert,

einem Datenformat (Format), zum Beispiel FP32 für 32-Bit-Fließkommazahlen, und einer Einheit

(Unit), etwa °C für Temperatur.

Diese Struktur wiederholt sich für alle Geräte in allen Arbeitsplätzen. In der vorliegenden JSON

tauchen manche Gerätenamen mehrfach auf, etwa „Leitungsschutzschalter 1“ für verschiedene

Arbeitsplätze, was technisch gesehen in JSON nicht zulässig ist, weil Schlüssel eindeutig sein müssen.

Um Konflikte zu vermeiden, müssten die Namen eindeutig gemacht werden, zum Beispiel durch

Hinzufügen des Arbeitsplatzes in den Namen. Insgesamt ist die JSON modular aufgebaut, wodurch sie

sich gut erweitern lässt, um beliebig viele Geräte und Messwerte zu verwalten, und sie eignet sich

besonders für die strukturierte Abfrage von Messdaten über ein Netzwerkprotokoll wie Modbus TCP.

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 36 | S e i t e

6 MODBUS
Das Kommunikationsprotokoll Modbus wurde ursprünglich im Jahr 1979 von der Firma Modicon

(heute Teil von Schneider Electric) entwickelt. Der Hintergrund war die zunehmende Verbreitung von

speicherprogrammierbaren Steuerungen (SPS, engl. PLC) in industriellen Anlagen. Diese Steuerungen

mussten Daten mit Sensoren, Aktoren, Messgeräten und übergeordneten Leitsystemen (SCADA-

Systemen) austauschen, doch damals gab es kaum standardisierte Protokolle.

Modicon wollte eine Lösung schaffen, die einfach, zuverlässig und offen dokumentiert war, damit

verschiedene Geräte verschiedener Hersteller miteinander kommunizieren konnten. So entstand

Modbus, das zu einem der ältesten noch heute genutzten Industrieprotokolle wurde.

Die ursprüngliche Form – Modbus RTU (Remote Terminal Unit) – basierte auf serieller

Kommunikation über RS-232 oder RS-485. Diese physikalischen Schnittstellen waren robust und

störsicher, aber sie erlaubten nur punkt-zu-punkt oder busförmige Kommunikation mit relativ

niedriger Übertragungsgeschwindigkeit (typisch 9,6 kbit/s bis 115,2 kbit/s).

Mit der fortschreitenden Vernetzung industrieller Anlagen, insbesondere durch den Einzug von

Ethernet in den 1990er-Jahren, wurde die Idee geboren, Modbus auch über IP-basierte Netzwerke zu

übertragen. Im Jahr 1999 wurde schließlich der offizielle Standard Modbus TCP/IP (kurz: Modbus-

TCP) veröffentlicht. Er verwendet die gleiche logische Struktur wie Modbus RTU, jedoch mit einem

völlig anderen physikalischen Übertragungsmedium (Ethernet) und Transportprotokoll (TCP/IP).

Eigenschaft Modbus RTU Modbus-TCP

Physikalische Schicht RS-485 / RS-232 Ethernet

Max. Geschwindigkeit ca. 115 kbit/s Bis 1 Gbit/s (abhängig vom

Netzwerk)

Teilnehmerzahl Max. 32 (ohne Repeater) Theoretisch unbegrenzt

Fehlererkennung CRC-16 im Telegramm Durch TCP-Prüfsummen

Adressierung Slave-Adresse (1–247) IP-Adresse + Unit-ID

Telegrammstruktur Start-/Stop-Bits + CRC MBAP-Header + TCP-Segment

Kommunikationsform Halbduplex (Master-Slave) Vollduplex (Client-Server)

6.1 MODBUS-RTU
Modbus RTU ist ein serielles Kommunikationsprotokoll, das für den Datenaustausch zwischen

elektronischen Geräten in industriellen Netzwerken entwickelt wurde. Es basiert auf einem Master-

Slave-Prinzip und arbeitet in der Regel auf physikalischer Ebene mit RS-485 oder RS-232. Der Begriff

„RTU“ steht für Remote Terminal Unit, was so viel bedeutet wie „entfernte Steuereinheit“. Das

beschreibt bereits den ursprünglichen Zweck: Die Kommunikation zwischen einer zentralen

Steuerungseinheit (z. B. einer SPS Speicherprogrammierbaren Steuerung) und verteilten Sensoren,

Aktoren oder Messmodulen über ein einziges, einfaches Bus-System.

Das Modbus-Protokoll ist binär codiert, was eine kompakte und effiziente Datenübertragung

ermöglicht. Im Gegensatz zur ASCII-Variante, die lesbar, aber langsamer ist, ist Modbus RTU auf

maximale Effizienz und Geschwindigkeit optimiert. Es eignet sich deshalb hervorragend für Systeme,

in denen regelmäßig und zuverlässig kleine Datenmengen übertragen werden müssen – etwa

Messwerte, Schaltzustände oder Steuerkommandos.

Das Modbus-Protokoll wurde 1979 von der Firma Modicon entwickelt, einem US-amerikanischen

Hersteller von Speicherprogrammierbaren Steuerungen, der später von Schneider Electric

übernommen wurde. Damals war die industrielle Kommunikation noch sehr herstellerspezifisch und

proprietär. Jeder Automatisierungshersteller nutzte eigene Kommunikationsmethoden, was die

Integration verschiedener Systeme erschwerte. Modbus war eines der ersten offenen Protokolle, das

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 37 | S e i t e

öffentlich dokumentiert und frei verfügbar war. Dadurch konnte jeder Hersteller eigene Geräte

entwickeln, die mit anderen Modbus-fähigen Geräten kommunizieren konnten.

Der ursprüngliche Zweck war einfach: Modicon wollte eine einfache Möglichkeit schaffen, Daten

zwischen einer zentralen Steuerung (Master) und mehreren dezentralen Geräten (Slaves)

auszutauschen. Die Anforderungen waren dabei klar:

• Das Protokoll sollte robust gegenüber elektrischen Störungen sein.

• Es sollte mit einfachen Mikrocontrollern realisierbar sein.

• Es sollte eine minimale Bandbreite benötigen.

Diese Philosophie spiegelt sich bis heute in Modbus RTU wider. Trotz neuerer Bus-Systeme wie

PROFIBUS, CANopen oder EtherCAT bleibt Modbus RTU aufgrund seiner Einfachheit, Robustheit

und weiten Verbreitung ein Industriestandard, der nach wie vor in neuen Geräten implementiert wird.

6.1.1 KOMMUNIKATION

Modbus RTU ist ein Master-Slave-Kommunikationssystem. Das bedeutet, dass nur ein Gerät (der

Master) die Kommunikation kontrolliert und Datenanfragen initiiert. Die übrigen Geräte (Slaves)

antworten ausschließlich, wenn sie vom Master angesprochen werden. Sie können weder selbstständig

senden noch den Bus aktiv übernehmen. Dieses Prinzip hat den Vorteil, dass es keine Kollisionen oder

Konflikte auf dem Bus gibt – es kommuniziert immer nur ein Gerät zur selben Zeit.

Ein typisches Modbus-Netzwerk besteht aus einem Master, beispielsweise einer SPS oder einem PC

mit Modbus-Schnittstelle, und mehreren Slaves, etwa Temperaturreglern, Stromzählern oder I/O-

Modulen. Jedes Slave-Gerät hat eine eindeutige Adresse zwischen 1 und 247, wobei 0 für Broadcasts

(Nachrichten an alle Slaves) reserviert ist. Broadcast-Kommandos werden zwar von allen Slaves

ausgeführt, aber nicht beantwortet, um Busüberlastung zu vermeiden.

Die Kommunikation verläuft streng sequenziell. Der Master sendet eine Anfrage, die das Zielgerät,

den gewünschten Funktionscode (also die Art der Aktion, z. B. „Register lesen“), die Datenadresse

und ggf. Parameter enthält. Der angesprochene Slave verarbeitet die Anfrage, führt die geforderte

Aktion aus und sendet eine Antwort zurück. Diese enthält entweder die angeforderten Daten oder eine

Bestätigung der erfolgreichen Ausführung. Falls ein Fehler auftritt (z. B. ungültige Adresse, falscher

Funktionscode oder CRC-Fehler), antwortet der Slave mit einem sogenannten Exception Frame, in

dem der Funktionscode um 0x80 erhöht ist und ein Fehlercode angegeben wird.

6.1.2 KOMMUNIKATIONSSTAPELS

Die physikalische Übertragungsschicht beschreibt, wie die elektrischen Signale auf der Leitung

tatsächlich übertragen werden – also welche Spannungen, Pegel, Kabeltypen, Topologien und

elektrischen Eigenschaften das Modbus-System nutzt.

Da Modbus RTU ausschließlich auf seriellen Schnittstellen basiert, erfolgt die Kommunikation über

asynchrone serielle Datenübertragung, typischerweise mit RS-485, seltener mit RS-232 oder RS-422.

Der physikalische Layer ist entscheidend für die Zuverlässigkeit, Reichweite und Störfestigkeit der

Modbus-Kommunikation. Obwohl das Protokoll selbst hardwareunabhängig ist, haben sich RS-485

und RS-232 als Standardtransportschichten etabliert, weil sie in der Industrie äußerst robust und

bewährt sind.

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 38 | S e i t e

6.1.2.1 RS-485

RS-485 (EIA-485) ist die am häufigsten verwendete physikalische Schnittstelle für Modbus RTU.

Sie wurde speziell für industrielle Umgebungen entwickelt, in denen elektromagnetische Störungen,

lange Leitungswege und mehrere Geräte auf einem Bus üblich sind.

RS-485 arbeitet differenziell, d. h. jedes Signal wird auf zwei Leitungen (A und B) übertragen, die

entgegengesetzte Spannungen führen.

Ein logisches Signal ergibt sich aus der Spannungsdifferenz zwischen diesen beiden Leitungen:

• Logische „1“ (Mark): Leitung A < Leitung B (Differenzspannung kleiner als –200 mV)

• Logische „0“ (Space): Leitung A > Leitung B (Differenzspannung größer als +200 mV)

Der Empfänger wertet also nicht den absoluten Pegel einer Leitung, sondern die Differenz zwischen

beiden aus.

Das hat den großen Vorteil, dass Gleichtaktstörungen – also Störungen, die beide Leitungen

gleichzeitig beeinflussen – herausfallen, weil sich die Differenz kaum ändert.

Dies ist der Schlüssel zur hohen Störsicherheit von RS-485, besonders bei langen Leitungen oder in

Umgebungen mit starker elektromagnetischer Beeinflussung (z. B. Motoren, Frequenzumrichter,

Schütze).

Die RS-485-Norm definiert, dass die Differenzspannung (A–B) mindestens ±200 mV betragen muss,

damit ein Zustand eindeutig erkannt werden kann. Der Treiber kann Differenzspannungen von bis zu

±5 V erzeugen. Die Eingänge müssen Gleichtaktspannungen zwischen –7 V und +12 V tolerieren

können, damit keine Fehlinterpretationen durch Spannungsverschiebungen im Bus entstehen.

RS-485 wird typischerweise in Daisy-Chain-Topologie (Linientopologie) aufgebaut. Das bedeutet, alle

Geräte sind entlang einer einzigen verdrillten Zweidrahtleitung miteinander verbunden. Diese Leitung

darf nicht sternförmig verzweigt werden, weil Signalreflexionen entstehen würden, die das Signal

verzerren und Telegramme unlesbar machen können.

An den beiden physikalischen Enden der Leitung werden sogenannte Abschlusswiderstände

(Termination Resistors) angebracht – meist 120 Ω. Diese Widerstände entsprechen in etwa dem

Wellenwiderstand der verdrillten A/B-Leitung und verhindern Reflexionen, die besonders bei höheren

Baudraten gravierende Signalstörungen verursachen.

Oft wird zusätzlich ein Schirm (Abschirmung) verwendet, der an einer Seite, meist nur auf Master-

Seite, mit Masse verbunden ist. Dies reduziert elektromagnetische Einstrahlung (EMI) und schützt vor

Störfeldern.

Ein unbelegter RS-485-Bus (also wenn gerade niemand sendet) kann sich in einem undefinierten

Zustand befinden, da alle Treiber inaktiv sind. Die Leitung schwebt („floating“) und elektrische

Rauschimpulse können fälschlich als gültige Bits erkannt werden. Um das zu verhindern, wird eine

Vorspannung (Biasing) verwendet. Ein Widerstandspaar (typisch 680 Ω–1 kΩ) zieht Leitung A leicht

auf +5 V und Leitung B leicht auf 0 V. Damit ergibt sich im Ruhezustand eine definierte

Differenzspannung (z. B. –200 mV), die als logische „1“ interpretiert wird. Diese Widerstände

befinden sich meist im Mastergerät, manchmal auch zusätzlich in Repeatern oder Gateways.

Typische Kabelparameter:

• Wellenwiderstand: ca. 120 Ω

• Aderquerschnitt: 0,25–0,5 mm² (je nach Länge)

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 39 | S e i t e

• Maximale Buslänge: 1200 m bei 9600 Baud

• Bei höheren Baudraten (z. B. 115200 Baud) verringert sich die mögliche Länge deutlich, oft

unter 100 m.

Eine Faustregel lautet:

• Je höher die Baudrate, desto kürzer darf die Leitung sein.

Die Leitungskapazität und -induktivität beeinflussen das Signalverhalten stark. Lange Leitungen

wirken wie Tiefpassfilter und können die Flanken der Rechtecksignale verformen. Deshalb werden in

langen Netzen Repeater oder Signalverstärker eingesetzt.

RS-485 kann halbduplex (Half-Duplex) oder vollduplex (Full-Duplex) betrieben werden.

Modbus RTU verwendet fast ausschließlich den Half-Duplex-Modus, um die Verkabelung zu

minimieren. Dabei werden dieselben A/B-Leitungen sowohl zum Senden als auch zum Empfangen

verwendet. Das Protokoll stellt sicher, dass zu jedem Zeitpunkt nur ein Gerät (meist der Master oder

ein gerade antwortender Slave) sendet – so entstehen keine Kollisionen.

In seltenen Fällen wird Full-Duplex (vieradrig) eingesetzt, wenn gleichzeitig gesendet und empfangen

werden soll (z. B. bei Modbus-Gateways oder Diagnosegeräten).

6.1.2.2 RS-232

Während RS-485 für Mehrpunktverbindungen optimiert ist, ist RS-232 eine Punkt-zu-Punkt-

Schnittstelle. Das bedeutet, dass hier nur ein Master und ein Slave direkt miteinander verbunden sein

können. Sie eignet sich daher für kurze, störungsarme Verbindungen – etwa zwischen PC und SPS

oder für Konfigurationstools.

RS-232 verwendet single-ended-Signale, d. h. die Signale werden gegen Masse übertragen. Der

logische Zustand ergibt sich also direkt aus der Spannung zwischen Signalleitung (z. B. TX) und

Bezugspotential (GND).

Die Signalpegel nach der EIA-232-Norm liegen zwischen +3 V bis +15 V für eine logische 0 (Space)

und –3 V bis –15 V für eine logische 1 (Mark). Das bedeutet, dass RS-232 mit invertierter Logik

arbeitet – im Gegensatz zu TTL- oder CMOS-Signalen, wo „1“ typischerweise +5 V bedeutet.

Da RS-232 keine differentielle Übertragung nutzt, ist es anfällig für Erdpotentialunterschiede und

elektrische Störfelder. Die maximale Leitungslänge liegt bei ca. 15 m, bei niedrigen Baudraten bis

19,2 kBaud manchmal etwas mehr. Dafür ist RS-232 äußerst einfach aufzubauen, benötigt keine

Abschlusswiderstände und ist in nahezu jedem Mikrocontroller oder PC-Interface integriert.

6.1.2.3 ZUSAMMENFASSUNG

Merkmal RS-485 RS-232

Signalart Differenziell Single-ended

Leitungen 2 (A/B) + GND TX, RX, GND

Kommunikation Halbduplex / Vollduplex Punkt-zu-Punkt

Typische Baudraten 1200–115200 Baud 1200–115200 Baud

Maximale Kabellänge ca. 1200 m @ 9600 Baud ca. 15 m

Anzahl der Geräte Bis zu 32 pro Bus Nur 2

Störfestigkeit Hoch Niedrig

Abschlusswiderstände Erforderlich (120 Ω) Nicht erforderlich

Bias-Widerstände Empfohlen Nicht nötig

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 40 | S e i t e

6.1.3 DATENÜBERTRAGUNG UND TELEGRAMMSTRUKTUR

Die Datenübertragung bei Modbus RTU ist asynchron und basiert auf der UART-Kommunikation.

Das bedeutet, dass die Daten byteweise übertragen werden, wobei jedes Byte aus 1 Startbit, 8

Datenbits, optional 1 Paritätsbit und 1 oder 2 Stopbits besteht. Üblich sind Konfigurationen wie 8N1

(8 Datenbits, keine Parität, 1 Stopbit) oder 8E1 (8 Datenbits, gerade Parität, 1 Stopbit).

Ein Modbus-RTU-Telegramm (auch „Frame“ genannt) besteht aus mehreren aufeinanderfolgenden

Bytes, die zeitlich sehr genau definiert sind. Es gibt keine Start- oder Endemarker im Datenstrom – die

Zeitlücken zwischen Telegrammen sind entscheidend. Wenn zwischen zwei Bytes eine Pause länger

als 1,5 Zeichenzeiten auftritt, wird das aktuelle Telegramm als beendet betrachtet. Zwischen zwei

vollständigen Telegrammen muss eine Pause von mindestens 3,5 Zeichenzeiten liegen. Diese zeitliche

Trennung ist essenziell, um den Anfang und das Ende einer Nachricht zu erkennen.

Ein vollständiger RTU-Frame hat folgende Struktur:

| Slave-Adresse (1 Byte) | Funktionscode (1 Byte) | Daten (n Bytes) | CRC-Prüfsumme (2 Bytes) |

Die Länge des Datenfeldes hängt von der Art der Anfrage ab. Bei einer Leseanforderung enthält es

beispielsweise Startadresse und Anzahl der zu lesenden Register; bei einer Schreibanforderung enthält

es die Zieladresse und die zu schreibenden Werte.

6.1.3.1 REGISTERSYSTEM

Das Herzstück des Modbus-Protokolls bilden die sogenannten Funktionscodes, die definieren, welche

Art von Operation durchgeführt wird. Sie reichen von einfachen Lese- und Schreibbefehlen bis zu

komplexeren Diagnosen.

Die wichtigsten Funktionscodes sind:

• 01 (Read Coils): Liest digitale Ausgänge, also Schaltzustände (Bits).

• 02 (Read Discrete Inputs): Liest digitale Eingänge.

• 03 (Read Holding Registers): Liest 16-Bit-Holding-Register (typisch für Messwerte, Sollwerte

oder Parameter).

• 04 (Read Input Registers): Liest 16-Bit-Input-Register (typisch für analoge Eingänge).

• 05 (Write Single Coil): Schreibt einen einzelnen digitalen Ausgang.

• 06 (Write Single Register): Schreibt ein einzelnes Holding-Register.

• 15 (Write Multiple Coils): Schreibt mehrere digitale Ausgänge gleichzeitig.

• 16 (Write Multiple Registers): Schreibt mehrere Holding-Register.

Das Datenmodell von Modbus ist streng in vier Speicherbereiche unterteilt:

• Coils (0xxxx): Schreib- und lesbare digitale Ausgänge (1 Bit).

• Discrete Inputs (1xxxx): Nur lesbare digitale Eingänge (1 Bit).

• Input Registers (3xxxx): Nur lesbare analoge Werte (16 Bit).

• Holding Registers (4xxxx): Schreib- und lesbare analoge Werte oder Parameter (16 Bit).

Intern arbeitet Modbus RTU grundsätzlich mit 16-Bit-Registern. Größere Datentypen wie 32-Bit-

Integer oder 32-Bit-Floats werden auf zwei Register aufgeteilt. Da Modbus keine Standarddefinition

für die Reihenfolge der Bytes oder Register hat, muss bei Mehrwort-Daten immer bekannt sein, ob das

Gerät Big-Endian oder Little-Endian arbeitet (dies wird oft als „Word Order“ bezeichnet).

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 41 | S e i t e

6.1.3.2 FEHLERERKENNUNG

Modbus RTU verwendet zur Fehlererkennung eine zyklische Redundanzprüfung (CRC-16).

Diese Prüfsumme deckt alle Bytes des Telegramms ab, außer die beiden CRC-Bytes selbst.

Der Algorithmus arbeitet folgendermaßen:

• Das CRC-Register wird mit 0xFFFF initialisiert.

• Jedes Byte der Nachricht wird mit dem CRC-Register durch XOR verknüpft.

• Für jedes der 8 Bits wird geprüft, ob das niederwertigste Bit gesetzt ist.

o Wenn ja, wird das Register nach rechts geschoben und mit dem Polynom 0xA001

verknüpft.

o Wenn nein, wird nur nach rechts geschoben.

• Am Ende ergibt sich eine 16-Bit-Prüfsumme, die in Little-Endian-Form (Low-Byte zuerst) an

das Telegramm angehängt wird.

Wenn der Empfänger dieselbe Berechnung durchführt und das Ergebnis nicht null ist, gilt das

Telegramm als fehlerhaft und wird verworfen.

6.1.3.3 BEISPIEL

Angenommen, der Master möchte von Slave 1 die Werte zweier Holding-Register (Adresse 40001 und

40002) lesen.

Der Master sendet folgendes Telegramm:

01 03 00 00 00 02 C4 0B

Das bedeutet:

• 01 → Slave-Adresse 1

• 03 → Funktionscode „Read Holding Registers“

• 00 00 → Startadresse 0 (entspricht 40001)

• 00 02 → Anzahl der Register (2 Stück)

• C4 0B → CRC-Prüfsumme (Low-Byte zuerst)

Der Slave antwortet:

01 03 04 00 0A 00 14 F9 6C

Bedeutung:

• 01 → Antwort von Slave 1

• 03 → Bestätigung Funktionscode 03

• 04 → Anzahl der folgenden Datenbytes (2 Register = 4 Byte)

• 00 0A → Wert des ersten Registers (10)

• 00 14 → Wert des zweiten Registers (20)

• F9 6C → CRC-Prüfsumme

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 42 | S e i t e

6.2 MODBUS-TCP

6.2.1 BEDEUTUNG TCP

Das Transmission Control Protocol (TCP) ist eines der zentralen Protokolle der

Internetprotokollfamilie (TCP/IP-Stack). Es arbeitet auf der Transportschicht (Layer 4) des OSI-

Modells und stellt eine zuverlässige, verbindungsorientierte Kommunikation zwischen zwei

Endpunkten bereit.

Im Gegensatz zu einfacheren, verbindungslosen Protokollen wie UDP (User Datagram Protocol)

garantiert TCP, dass:

• alle gesendeten Datenpakete vollständig und in der richtigen Reihenfolge beim Empfänger

ankommen,

• keine Duplikate oder Verluste auftreten,

• und eventuelle Übertragungsfehler automatisch erkannt und korrigiert werden.

Das geschieht durch Sequenznummern, Bestätigungen (ACKs), Timeout-Mechanismen und

Wiederholungen.

Vor jeder Datenübertragung baut TCP eine logische Verbindung zwischen Client und Server auf, den

sogenannten TCP-Handshake (ein dreistufiger Verbindungsaufbau: SYN → SYN/ACK → ACK).

Erst danach beginnt die eigentliche Datenübertragung.

Modbus-TCP kann sich auf eine zuverlässige Übertragungsschicht verlassen. Fehlererkennung und -

korrektur, die bei Modbus RTU noch durch eine CRC-Prüfsumme im Telegramm realisiert werden

mussten, sind bei Modbus-TCP durch TCP bereits gewährleistet.

Dadurch wird die Kommunikation einfacher und effizienter, ohne dass sie an Sicherheit verliert.

6.2.2 KOMMUNIKATIONSSTAPELS

Modbus-TCP integriert sich direkt in den Ethernet- und IP-Kommunikationsstapel.

Man kann sich das in vier Hauptschichten vorstellen:

1. Physikalische Schicht (Layer 1):

Hier findet die elektrische Signalübertragung über Twisted-Pair-Kabel (z. B. Cat 5e, Cat 6)

oder Lichtwellenleiter statt. Diese Ebene ist identisch mit der von herkömmlichen Ethernet-

Netzwerken (IEEE 802.3-Standard).

2. Sicherungsschicht (Layer 2):

Ethernet-Frames werden gebildet, MAC-Adressen dienen der Adressierung der Geräte im

lokalen Netzwerk. Die Daten werden in Ethernet-Frames gekapselt.

3. Netzwerkschicht (Layer 3):

Diese Schicht ist durch das Internet Protocol (IP) realisiert. Jedes Gerät im Netzwerk besitzt

eine eindeutige IP-Adresse, wodurch auch Kommunikation über Router und größere

Netzwerke hinweg möglich wird.

4. Transportschicht (Layer 4):

Hier arbeitet TCP, das einen logischen Datenkanal zwischen zwei Geräten aufbaut.

TCP verwendet standardmäßig Port 502 für Modbus-Kommunikation.

Jeder Modbus-TCP-Server (z. B. eine SPS) lauscht also auf Port 502 auf eingehende

Verbindungen, während der Client (z. B. ein HMI oder PC-Programm) Anfragen an diesen

Port sendet.

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 43 | S e i t e

5. Anwendungsschicht (Layer 7):

Hier befindet sich das eigentliche Modbus-Anwendungsprotokoll (Modbus Application

Protocol, kurz MAP), das definiert, welche Daten übertragen werden und wie sie interpretiert

werden müssen.

TCP/IP transportiert die Daten, Modbus definiert ihren Inhalt.

6.2.3 DATENÜBERTRAGUNG UND TELEGRAMMSTRUKTUR

Ein Modbus-TCP-Telegramm besteht im Wesentlichen aus zwei Teilen: dem MBAP-Header (Modbus

Application Protocol Header) und der PDU (Protocol Data Unit).

6.2.3.1 MBAP-HEADER

Der MBAP-Header umfasst genau 7 Byte und ist eine Erweiterung gegenüber dem Modbus-RTU-

Protokoll.

Er enthält Verwaltungsinformationen, die für die Zuordnung und Identifikation der Nachrichten

innerhalb einer TCP-Verbindung notwendig sind.

Byte Bezeichnung Länge Beschreibung

0-1 Transaction Identifier 2 Byte Vom Client gesetzt, damit Antwort eindeutig

zugeordnet werden kann

2-3 Protocol Identifier 2 Byte Immer 0x0000 für Modbus; andere Werte reserviert

4-5 Length 2 Byte Gibt die Länge der nachfolgenden Daten (inkl. Unit-

Identifier) an

6 Unit Identifier 1 Byte Entspricht der Slave-Adresse bei RTU; dient bei

Gateways zur Zuordnung

Die Transaction-ID ist besonders wichtig, wenn mehrere Anfragen parallel über eine einzige TCP-

Verbindung laufen (sogenanntes Pipelining).

Dadurch kann der Client auch dann die Antworten korrekt zuordnen, wenn sie in anderer Reihenfolge

zurückkommen.

Der Unit Identifier ist vor allem relevant, wenn ein Modbus-TCP/RTU-Gateway verwendet wird.

Das Gateway empfängt TCP-Nachrichten und leitet sie seriell an die angeschlossenen RTU-Geräte

weiter. In diesem Fall ist die Unit-ID die RTU-Slave-Adresse.

Wenn keine seriellen Geräte beteiligt sind (also reine TCP-Kommunikation), wird meist einfach der

Wert 0xFF oder 0x01 verwendet.

6.2.3.2 DIE PDU

Die PDU ist der Teil, der das eigentliche Modbus-Protokoll abbildet.

Sie besteht aus einem Funktionscode (1 Byte) und den zugehörigen Daten.

Der Funktionscode bestimmt, welche Art von Zugriff oder Aktion ausgeführt werden soll.

Zum Beispiel:

• 0x01 → Lesen von digitalen Ausgängen (Coils)

• 0x02 → Lesen von digitalen Eingängen

• 0x03 → Lesen von Holding-Registern (z. B. Messwerte oder Sollwerte)

• 0x04 → Lesen von Input-Registern (z. B. analoge Eingänge)

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 44 | S e i t e

• 0x05 → Schreiben eines einzelnen Coils

• 0x06 → Schreiben eines einzelnen Registers

• 0x10 → Schreiben mehrerer Register

Die Datenfelder in der PDU enthalten Adressen, Mengenangaben und ggf. Werte, die übertragen

werden sollen.

Ein Holding-Register umfasst immer 16 Bit (2 Byte), und die Adressierung beginnt traditionell bei

40001, was aber nur eine logische Darstellung ist – im Telegramm selbst wird die Adresse 0-basiert

übertragen.

6.2.3.3 BEISPIEL

Nehmen wir an, ein Client möchte die Holding-Register 40001 und 40002 eines Geräts mit Unit-ID 1

lesen.

Request (Hexadezimal):

00 01 00 00 00 06 01 03 00 00 00 02

Aufgeschlüsselt:

• 00 01 → Transaction-ID = 1

• 00 00 → Protocol-ID = 0 (Modbus)

• 00 06 → Länge der nachfolgenden Bytes (6 Byte)

• 01 → Unit-Identifier (Geräteadresse 1)

• 03 → Funktionscode „Read Holding Registers“

• 00 00 → Startadresse 0 (entspricht Register 40001)

• 00 02 → Anzahl Register 2

Response (Beispiel):

00 01 00 00 00 07 01 03 04 00 0A 00 14

Das Gerät antwortet mit:

• denselben Transaction- und Unit-IDs,

• dem Funktionscode 03,

• der Angabe, dass 4 Byte Daten folgen (04),

• und den zwei Registerwerten: 0x000A (= 10) und 0x0014 (= 20).

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 45 | S e i t e

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 46 | S e i t e

LITERATURVERZEICHNIS

[1] Siemens , „Siemens Industry Mall - 7KM2200-2EA40-1EA1,“ Siemens , 20 10 2025. [Online].

Available: https://mall.industry.siemens.com/mall/de/oeii/Catalog/Product/7KM2200-2EA40-

1EA1. [Zugriff am 20 10 2025].

[2] Siemens, „Siemens Industry Mall - 7KN1111-0MC00,“ Siemens, 20 10 2025. [Online]. Available:

https://mall.industry.siemens.com/mall/de/oeii/Catalog/Product/7KN1111-0MC00. [Zugriff am 20

10 2025].

[3] Siemens, „Siemens Industry Mall - 5SV6016-7MC16,“ Siemens, 20 10 2025. [Online]. Available:

https://mall.industry.siemens.com/mall/de/oeii/Catalog/Product/5SV6016-7MC16. [Zugriff am 20

10 2025].

[4] Siemens , „Siemens SiePortal Support - Modbus Register für SENTRON COM System,“ 20 10

2025. [Online]. Available: https://support.industry.siemens.com/cs/document/109973540/modbus-

register-für-sentron-com-system. [Zugriff am 20 10 2025].

S C P & R E I P R O J E K T A R B E I T S M A R T E R L S S 47 | S e i t e

ABBILDUNGSVERZEICHNIS
Es konnten keine Einträge für ein Abbildungsverzeichnis gefunden werden.

